Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity

[1]  L. Juncos,et al.  Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension. , 2016, Journal of the American Society of Nephrology : JASN.

[2]  T. Kurtz,et al.  Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension , 2016, Circulation.

[3]  Tom R. Gaunt,et al.  Edinburgh Research Explorer Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function , 2022 .

[4]  Edward Klorman,et al.  Web Resources , 2019, Istanbul.

[5]  J. Mattana,et al.  Cholesterol Metabolism in CKD. , 2015, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[6]  Mitchell J. Machiela,et al.  LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants , 2015, Bioinform..

[7]  B. Pasaniuc,et al.  Leveraging Functional-Annotation Data in Trans-ethnic Fine-Mapping Studies. , 2015, American journal of human genetics.

[8]  R. Foley,et al.  United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease , 2015, Kidney international supplements.

[9]  Andrew D. Johnson,et al.  Genome-wide association study of kidney function decline in individuals of European descent , 2014, Kidney international.

[10]  P. Visscher,et al.  Title: Across-cohort Qc Analyses of Genome-wide Association Study Summary Statistics from Complex Traits Wray 1 , the Genetic Investigation of Anthropometric Traits (giant) Consortium , 2015 .

[11]  Han Xu,et al.  Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. , 2014, American journal of human genetics.

[12]  Kari Stefansson,et al.  Rare mutations associating with serum creatinine and chronic kidney disease. , 2014, Human molecular genetics.

[13]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[14]  Mark I. McCarthy,et al.  Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants , 2013, Nature Genetics.

[15]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[16]  Stephen C. J. Parker,et al.  Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.

[17]  R. Carey,et al.  Loss of Collectrin, an Angiotensin-Converting Enzyme 2 Homolog, Uncouples Endothelial Nitric Oxide Synthase and Causes Hypertension and Vascular Dysfunction , 2013, Circulation.

[18]  A. Patzak,et al.  Interactions between adenosine, angiotensin II and nitric oxide on the afferent arteriole influence sensitivity of the tubuloglomerular feedback , 2013, Front. Physiol..

[19]  Harshal A Deshmukh,et al.  Investigation of known estimated glomerular filtration rate loci in patients with Type 2 diabetes , 2013, Diabetic Medicine.

[20]  Y. Teo,et al.  Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. , 2013, Human molecular genetics.

[21]  Buhm Han,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012 .

[22]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[23]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[24]  N. Hukriede,et al.  HDAC inhibitors in kidney development and disease , 2012, Pediatric Nephrology.

[25]  Christian Gieger,et al.  Discovery and fine mapping of serum protein loci through transethnic meta-analysis. , 2012, American journal of human genetics.

[26]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[27]  Y. J. Kim,et al.  Meta-analysis identifies multiple loci associated with kidney function–related traits in east Asian populations , 2012, Nature Genetics.

[28]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[29]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[30]  Sylvia Stracke,et al.  Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function , 2012, PLoS genetics.

[31]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[32]  Josef Coresh,et al.  Chronic kidney disease , 2012, The Lancet.

[33]  A. Morris,et al.  Transethnic Meta-Analysis of Genomewide Association Studies , 2011, Genetic epidemiology.

[34]  D. Bachvarov,et al.  Histone Deacetylase (HDAC) Activity Is Critical for Embryonic Kidney Gene Expression, Growth, and Differentiation* , 2011, The Journal of Biological Chemistry.

[35]  Yongkyu Park,et al.  Regulation of longevity by regulator of G‐protein signaling protein, Loco , 2011, Aging Cell.

[36]  Yabing Chen,et al.  Mechanisms and consequences of salt sensitivity and dietary salt intake , 2011, Current opinion in nephrology and hypertension.

[37]  F. Arturi,et al.  One-hour postload plasma glucose levels are associated with kidney dysfunction. , 2010, Clinical journal of the American Society of Nephrology : CJASN.

[38]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[39]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[40]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[41]  Uwe Völker,et al.  New loci associated with kidney function and chronic kidney disease , 2010, Nature Genetics.

[42]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[43]  David B. Goldstein,et al.  Rare Variants Create Synthetic Genome-Wide Associations , 2010, PLoS biology.

[44]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[45]  T. Le,et al.  Glutathione S-Transferase-&mgr;1 Regulates Vascular Smooth Muscle Cell Proliferation, Migration, and Oxidative Stress , 2009, Hypertension.

[46]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[47]  D. Marchuk,et al.  Hypertension and albuminuria in chronic kidney disease mapped to a mouse chromosome 11 locus. , 2007, Kidney international.

[48]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[49]  Evangelos Evangelou,et al.  Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.

[50]  F. Cappuccio,et al.  Incidence of hypertension in individuals with different blood pressure salt-sensitivity: results of a 15-year follow-up study , 2007, Journal of hypertension.

[51]  D. Hultmark,et al.  The Drosophila NFAT homolog is involved in salt stress tolerance. , 2007, Insect biochemistry and molecular biology.

[52]  R. Foley,et al.  Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. , 2007, Journal of the American Society of Nephrology : JASN.

[53]  Acknowledgments , 2006, Molecular and Cellular Endocrinology.

[54]  H. Muller The American Journal of Human Genetics Vol . 2 No . 2 June 1950 Our Load of Mutations 1 , 2006 .

[55]  J. Schnermann,et al.  Die Natriumkonzentration an den Macula densa-Zellen als regulierender Faktor für das Glomerulumfiltrat (Mikropunktionsversuche) , 1965, Klinische Wochenschrift.

[56]  Ethan M Balk,et al.  K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[57]  Kdoqi Disclaimer K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[58]  A. Bihorac,et al.  Association between salt sensitivity and target organ damage in essential hypertension. , 2000, American journal of hypertension.

[59]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[60]  W. Welch,et al.  TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension. , 1996, Kidney international. Supplement.

[61]  S. Bianchi,et al.  Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. , 1994, Hypertension.

[62]  J. Schnermann,et al.  [THE SODIUM CONCENTRATION IN THE MACULA DENSA CELLS AS A REGULATING FACTOR FOR GLOMERULAR FILTRATION (MICROPUNCTURE EXPERIMENTS)]. , 1965, Klinische Wochenschrift.