Design and Trade-offs of a Pole-Sitter Mission

This paper provides a mission analysis and systems design of a pole-sitter mission, i.e. a spacecraft that is continuously above an Earth Pole, and can provide real-time, continuous and hemispherical coverage of the polar regions. Two different propulsion strategies are proposed: solar electric propulsion (SEP) and SEP hybridized with a solar sail. For both, minimum-propellant pole-sitter orbits and transfers are designed, assuming Soyuz and Ariane 5 launch options. A mass budget analysis allows for a trade-off between mission lifetime and payload mass capacity (up to 7 years for 100 kg), and candidate payloads for a range of applications are investigated.

[1]  Victor M. Becerra,et al.  Solving complex optimal control problems at no cost with PSOPT , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[2]  John R. Brophy Advanced ion propulsion systems for affordable deep-space missions , 2003 .

[3]  Alessandro Antonio Quarta,et al.  Tradeoff Performance of Hybrid Low-Thrust Propulsion System , 2007 .

[4]  Johnie M. Driver Analysis of an Arctic Polesitter , 1979 .

[5]  Colin R. McInnes,et al.  Systems design of a hybrid sail pole-sitter , 2011 .

[6]  Colin R. McInnes Mission application case studies , 1999 .

[7]  Colin R. McInnes,et al.  Generation of Optimal Trajectories for Earth Hybrid Pole Sitters , 2011 .

[8]  Alex Coletti,et al.  The possibilities of polar meteorology, environmental remote sensing, communications and space weather applications from Artificial Lagrange Orbit , 2011 .

[9]  John E. Prussing,et al.  Solar Sailing: Technology, Dynamics, and Mission Applications , 2000 .

[10]  Rainer Killinger,et al.  Evaluation of the Performance of the Advanced 200mN Radio-Frequency Ion Thruster RIT-XT , 2002 .

[11]  Les Johnson,et al.  NanoSail-D: A solar sail demonstration mission , 2011 .

[12]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[13]  Matteo Ceriotti,et al.  Design of optimal transfers between North and South Pole-sitter orbits , 2012 .

[14]  Robert L. Forward,et al.  Statite - A spacecraft that does not orbit , 1991 .

[15]  Colin R. McInnes,et al.  Displaced geostationary orbit design using hybrid sail propulsion , 2011 .

[16]  Alessandro Antonio Quarta,et al.  Parametric model and optimal control of solar sails with optical degradation , 2006 .

[17]  Pamela G. Anderson,et al.  Extension of earth orbits using low-thrust propulsion , 2010 .

[18]  Colin R. McInnes,et al.  Periodic Orbits Above the Ecliptic in the Solar-Sail Restricted Three-Body Problem , 2007 .

[19]  Malcolm Macdonald,et al.  Extension of the Molniya orbit using low-thrust propulsion , 2011 .

[20]  Colin R. McInnes,et al.  Artificial Three-Body Equilibria for Hybrid Low-Thrust Propulsion , 2008 .

[21]  Colin R. McInnes,et al.  Displaced periodic orbits with low-thrust propulsion , 2009 .

[22]  Colin R. McInnes,et al.  Novel mission concepts for polar coverage : An overview of recent developments and possible future applications , 2012 .

[23]  Colin R. McInnes,et al.  Design of optimal earth pole-sitter transfers using low-thrust propulsion , 2011 .

[24]  Alessandro Antonio Quarta,et al.  Trajectory Design with Hybrid Low-Thrust Propulsion System , 2007 .

[25]  David M. Murphy,et al.  Scalable Solar-Sail Subsystem Design Concept , 2003 .

[26]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..