High strength nanocomposite hydrogel bilayer with bidirectional bending and shape switching behaviors for soft actuators

We report on a type of TiO2 cross-linked nanocomposite hydrogel bilayer with bidirectional bending and shape switching behaviors that could be used as a soft actuator.

[1]  Curtis W. Frank,et al.  A microfluidic actuator based on thermoresponsive hydrogels , 2003 .

[2]  Lina Zhang,et al.  Swelling Behaviors of pH- and Salt-Responsive Cellulose-Based Hydrogels , 2011 .

[3]  K. De Yao,et al.  A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. , 2004, Biomaterials.

[4]  D. Mooney,et al.  Hydrogels for tissue engineering. , 2001, Chemical Reviews.

[5]  Malav S. Desai,et al.  Light-controlled graphene-elastin composite hydrogel actuators. , 2013, Nano letters.

[6]  R. Sun,et al.  Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid) , 2012 .

[7]  Xueming Zhang,et al.  Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels , 2013, Cellulose.

[8]  Zhong-Zhen Yu,et al.  Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels , 2012 .

[9]  Toru Takehisa,et al.  Compositional effects on mechanical properties of Nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay , 2003 .

[10]  Bo Xu,et al.  High strength nanocomposite hydrogels with outstanding UV‐shielding property , 2016 .

[11]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[12]  Toru Takehisa,et al.  Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay , 2002 .

[13]  Bo Xu,et al.  Nanocomposite hydrogels with high strength cross-linked by titania , 2013 .

[14]  J Fraser Stoddart,et al.  Azobenzene-based light-responsive hydrogel system. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[15]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[16]  Andrew D. Ellington,et al.  Hydrogel Biosensor Array Platform Indexed by Shape , 2004 .

[17]  P. Gupta,et al.  Hydrogels: from controlled release to pH-responsive drug delivery. , 2002, Drug discovery today.

[18]  J. Dumais,et al.  Explosive dispersal and self-burial in the seeds of the filaree, ERodium cicutarium (Geraniaceae) , 2013 .

[19]  Jingjing Zhang,et al.  Temperature-sensitive bending of bigel strip bonded by macroscopic molecular recognition , 2012 .

[20]  Xiaodong Wang,et al.  Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization , 2011 .

[21]  Chaobin He,et al.  The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. , 2004, Biomaterials.

[22]  Wendelin Jan Stark,et al.  Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. , 2009, Small.

[23]  Zhibing Hu,et al.  Synthesis and Application of Modulated Polymer Gels , 1995, Science.

[24]  Eric Elliott,et al.  Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA−Clay Nanocomposite Hydrogels , 2005 .

[25]  D. Gracias,et al.  Photolithographically patterned smart hydrogel based bilayer actuators , 2010 .

[26]  J. Shim,et al.  Chemo-responsive bilayer actuator film: fabrication, characterization and actuator response , 2014 .

[27]  A. Han,et al.  Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. , 2008, Biomaterials.