CDNet: Complementary Depth Network for RGB-D Salient Object Detection

Current RGB-D salient object detection (SOD) methods utilize the depth stream as complementary information to the RGB stream. However, the depth maps are usually of low-quality in existing RGB-D SOD datasets. Most RGB-D SOD networks trained with these datasets would produce error-prone results. In this paper, we propose a novel Complementary Depth Network (CDNet) to well exploit saliency-informative depth features for RGB-D SOD. To alleviate the influence of low-quality depth maps to RGB-D SOD, we propose to select saliency-informative depth maps as the training targets and leverage RGB features to estimate meaningful depth maps. Besides, to learn robust depth features for accurate prediction, we propose a new dynamic scheme to fuse the depth features extracted from the original and estimated depth maps with adaptive weights. What’s more, we design a two-stage cross-modal feature fusion scheme to well integrate the depth features with the RGB ones, further improving the performance of our CDNet on RGB-D SOD. Experiments on seven benchmark datasets demonstrate that our CDNet outperforms state-of-the-art RGB-D SOD methods. The code is publicly available at https://github.com/blanclist/CDNet.

[1]  Yicong Zhou,et al.  RGB-‘D’ Saliency Detection With Pseudo Depth , 2019, IEEE Transactions on Image Processing.

[2]  Yao Zhao,et al.  Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Xueqing Li,et al.  Leveraging stereopsis for saliency analysis , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Zhe Wu,et al.  Cascaded Partial Decoder for Fast and Accurate Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Zhao Zhang,et al.  Bilateral Attention Network for RGB-D Salient Object Detection , 2020, IEEE Transactions on Image Processing.

[6]  Huchuan Lu,et al.  Attentive Feedback Network for Boundary-Aware Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yang Cao,et al.  Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Youfu Li,et al.  Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Hwann-Tzong Chen,et al.  Preattentive co-saliency detection , 2010, 2010 IEEE International Conference on Image Processing.

[10]  Michael Ying Yang,et al.  Exploiting global priors for RGB-D saliency detection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[11]  Ling Shao,et al.  RANet: Ranking Attention Network for Fast Video Object Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[12]  Changqun Xia,et al.  Selectivity or Invariance: Boundary-Aware Salient Object Detection , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[13]  Nuno Vasconcelos,et al.  Biologically Inspired Object Tracking Using Center-Surround Saliency Mechanisms , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Haibin Ling,et al.  Scale and object aware image retargeting for thumbnail browsing , 2011, 2011 International Conference on Computer Vision.

[15]  Lei Zhang,et al.  A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection , 2020, ECCV.

[16]  Yongri Piao,et al.  Select, Supplement and Focus for RGB-D Saliency Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Wei Guo,et al.  ICNet: Intra-saliency Correlation Network for Co-Saliency Detection , 2020, NeurIPS.

[19]  Nikos Komodakis,et al.  Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer , 2016, ICLR.

[20]  Huan Du,et al.  Depth-Aware Salient Object Detection and Segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning , 2017, IEEE Transactions on Image Processing.

[21]  Hao Chen,et al.  RGBD Salient Object Detection via Disentangled Cross-Modal Fusion , 2020, IEEE Transactions on Image Processing.

[22]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[23]  Zheng Lin,et al.  Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[24]  Junwei Han,et al.  Learning Selective Self-Mutual Attention for RGB-D Saliency Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Haibin Ling,et al.  ICNet: Information Conversion Network for RGB-D Based Salient Object Detection , 2020, IEEE Transactions on Image Processing.

[26]  Ran Ju,et al.  Depth saliency based on anisotropic center-surround difference , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[27]  Youfu Li,et al.  Three-Stream Attention-Aware Network for RGB-D Salient Object Detection , 2019, IEEE Transactions on Image Processing.

[28]  Jianmin Jiang,et al.  A Simple Pooling-Based Design for Real-Time Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Bernhard Schölkopf,et al.  Unifying distillation and privileged information , 2015, ICLR.

[30]  Junwei Han,et al.  CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion. , 2018, IEEE transactions on cybernetics.

[31]  Nick Barnes,et al.  UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[33]  Ge Li,et al.  A Three-Pathway Psychobiological Framework of Salient Object Detection Using Stereoscopic Technology , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[34]  Tongwei Ren,et al.  Salient object detection for RGB-D image via saliency evolution , 2016, 2016 IEEE International Conference on Multimedia and Expo (ICME).

[35]  Jiandong Tian,et al.  RGBD Salient Object Detection via Deep Fusion , 2016, IEEE Transactions on Image Processing.

[36]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[37]  Jing Xiao,et al.  Importance filtering for image retargeting , 2011, CVPR 2011.

[38]  Mengke Huang,et al.  Personal Fixations-Based Object Segmentation With Object Localization and Boundary Preservation , 2020, IEEE Transactions on Image Processing.

[39]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Huchuan Lu,et al.  Towards High-Resolution Salient Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Tao Li,et al.  Structure-Measure: A New Way to Evaluate Foreground Maps , 2017, International Journal of Computer Vision.

[42]  Qingming Huang,et al.  Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion , 2016, IEEE Signal Processing Letters.

[43]  Huchuan Lu,et al.  Hierarchical Dynamic Filtering Network for RGB-D Salient Object Detection , 2020, ECCV.

[44]  Qijun Zhao,et al.  JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Huchuan Lu,et al.  A Mutual Learning Method for Salient Object Detection With Intertwined Multi-Supervision , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Xiaochun Cao,et al.  Depth Enhanced Saliency Detection Method , 2014, ICIMCS '14.

[47]  Linwei Ye,et al.  Cross-Modal Weighting Network for RGB-D Salient Object Detection , 2020, ECCV.

[48]  Kaiming He,et al.  Designing Network Design Spaces , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Nick Barnes,et al.  Local Background Enclosure for RGB-D Salient Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Bo Ren,et al.  Enhanced-alignment Measure for Binary Foreground Map Evaluation , 2018, IJCAI.

[51]  Rongrong Ji,et al.  RGBD Salient Object Detection: A Benchmark and Algorithms , 2014, ECCV.

[52]  Wei Ji,et al.  Depth-Induced Multi-Scale Recurrent Attention Network for Saliency Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[53]  Zhi Liu,et al.  Constrained fixation point based segmentation via deep neural network , 2019, Neurocomputing.

[54]  Nassir Navab,et al.  Deeper Depth Prediction with Fully Convolutional Residual Networks , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[55]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[56]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[57]  Dan Su,et al.  Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection , 2019, Pattern Recognit..

[58]  Chong Peng,et al.  Improved Saliency Detection in RGB-D Images Using Two-Phase Depth Estimation and Selective Deep Fusion , 2020, IEEE Transactions on Image Processing.

[59]  Ronggang Wang,et al.  An Innovative Salient Object Detection Using Center-Dark Channel Prior , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[60]  Ling Shao,et al.  An Iterative and Cooperative Top-Down and Bottom-Up Inference Network for Salient Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  James M. Rehg,et al.  An In Depth View of Saliency , 2013, BMVC.

[62]  Haibin Ling,et al.  Saliency Detection on Light Field , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[64]  Yongri Piao,et al.  A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  Brian Kingsbury,et al.  Very deep multilingual convolutional neural networks for LVCSR , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[67]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[68]  Tao Xiang,et al.  Learning to Compare: Relation Network for Few-Shot Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.