On a new class of structured matrices
暂无分享,去创建一个
[1] E. Asplund,et al. Inverses of Matrices $\{a_{ij}\}$ which Satisfy $a_{ij} = 0$ for $j > i+p$. , 1959 .
[2] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[3] Gene H. Golub,et al. Matrix computations , 1983 .
[4] Israel Gohberg,et al. Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties , 1984 .
[5] F. R. Gantmakher. The Theory of Matrices , 1984 .
[6] Israel Koltracht,et al. Linear complexity algorithm for semiseparable matrices , 1985 .
[7] Thomas Kailath,et al. A note on diagonal innovation matrices , 1987, IEEE Trans. Acoust. Speech Signal Process..
[8] Ali H. Sayed,et al. Displacement Structure: Theory and Applications , 1995, SIAM Rev..
[9] Yuli Eidelman,et al. Inversion formulas and linear complexity algorithm for diagonal plus semiseparable matrices , 1997 .
[10] Israel Gohberg,et al. Fast inversion algorithms for diagonal plus semiseparable matrices , 1997 .