A simulated annealing algorithm for noisy multiobjective optimization

This paper presents a new simulated annealing (SA) algorithm for noisy multiobjective optimization with continuous decision variables. A novel feature of the algorithm in the context of SA is that the performance of a candidate solution is determined by estimating the probabilities that the candidate is dominated by the current non-dominated solutions. The sum of these probabilities provides a scalar performance measure that is used to determine the acceptance of the candidate as the current solution and whether the candidate is inserted into the non-dominated set. The second novel feature of the algorithm is the technique utilized for generating candidate solutions. Empirical probability distributions for sampling the new values of the decision variables are constructed on the basis of the values of the variables in the current non-dominated set. Thus, the information contained by the non-dominated set is utilized to improve the quality of the generated candidates, whereas this information is ignored in the existing multiobjective SA algorithms. The proposed algorithm is compared with a reference state-of-the-art evolutionary algorithm as well as two other SA algorithms in numerical experiments involving 16 problems from commonly applied test suites. The proposed algorithm performs as good or better compared with the reference algorithms in majority of the experiments and therefore represents a promising solution method for noisy multiobjective optimization problems. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Geoffrey D. Rubin,et al.  Learning-enhanced simulated annealing: method, evaluation, and application to lung nodule registration , 2008, Applied Intelligence.

[2]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[3]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[4]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[5]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[6]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[7]  Jonathan E. Fieldsend,et al.  Multi-objective optimisation in the presence of uncertainty , 2005, 2005 IEEE Congress on Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[10]  Reinaldo J. Moraga,et al.  A meta-heuristic based on simulated annealing for solving multiple-objective problems in simulation optimization , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[11]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[12]  Robert Ivor John,et al.  Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling , 2010, Eur. J. Oper. Res..

[13]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[14]  Walter J. Gutjahr,et al.  Two Metaheuristics for Multiobjective Stochastic Combinatorial Optimization , 2005, SAGA.

[15]  Kay Chen Tan,et al.  An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[16]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[17]  Chris Murphy,et al.  Dominance-Based Multiobjective Simulated Annealing , 2008, IEEE Transactions on Evolutionary Computation.

[18]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[20]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[21]  Shinn-Ying Ho,et al.  A Novel Multi-objective Orthogonal Simulated Annealing Algorithm for Solving Multi-objective Optimization Problems with a Large Number of Parameters , 2004, GECCO.

[22]  Mahmoud H. Alrefaei,et al.  A simulated annealing technique for multi-objective simulation optimization , 2009, Appl. Math. Comput..

[23]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[26]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[27]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[28]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[29]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[30]  Nazish Hoda,et al.  Orthogonal simulated annealing for multiobjective optimization , 2010, Comput. Chem. Eng..

[31]  Christian Igel,et al.  Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search , 2009, ICML '09.

[32]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[33]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[34]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[35]  Kai Virtanen,et al.  Improving Maintenance Decision Making in the Finnish Air Force Through Simulation , 2008, Interfaces.

[36]  Heike Trautmann,et al.  A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms , 2011, EMO.

[37]  Loo Hay Lee,et al.  Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem , 2008, Eur. J. Oper. Res..