Ion-selective formation of a guanine quadruplex on DNA origami structures.

DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na(+) and K(+)) is currently used for the detection of K(+) ions, however, with insufficient selectivity towards Na(+). By means of FRET between two suitable dyes attached to the 3'- and 5'-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.

[1]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[2]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[3]  Stephen Neidle,et al.  Crystal structure of parallel quadruplexes from human telomeric DNA , 2002, Nature.

[4]  Jean-Louis Mergny,et al.  Controlling the stoichiometry and strand polarity of a tetramolecular G-quadruplex structure by using a DNA origami frame , 2013, Nucleic acids research.

[5]  W. Gilbert,et al.  Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis , 1988, Nature.

[6]  Lidong Li,et al.  Electrochemical potassium ion sensor based on DNA G-quadruplex conformation and gold nanoparticle amplification , 2013, Rare Metals.

[7]  Shigeori Takenaka,et al.  A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. , 2002, Journal of the American Chemical Society.

[8]  S. Takenaka,et al.  Fluorescence Detection of Potassium Ion Using the G-Quadruplex Structure , 2011, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[9]  Daoben Zhu,et al.  Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection. , 2005, Journal of the American Chemical Society.

[10]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[11]  Thomas R. Cech Leben am Ende der Chromosomen: Telomere und Telomerase , 2000 .

[12]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[13]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[14]  G. Parkinson,et al.  The structure of telomeric DNA. , 2003, Current opinion in structural biology.

[15]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[16]  Th. Förster Energiewanderung und Fluoreszenz , 1946 .

[17]  L. S. Cram,et al.  A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Hong-Ku Shim,et al.  Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. , 2012, Journal of the American Chemical Society.

[19]  Adrian Keller,et al.  Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy , 2014, Molecules.

[20]  S. Nagatoishi,et al.  Fluorescence energy transfer probes based on the guanine quadruplex formation for the fluorometric detection of potassium ion. , 2007, Analytica chimica acta.

[21]  Masayuki Endo,et al.  Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. , 2014, Angewandte Chemie.

[22]  D. Patel,et al.  Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. , 1993, Structure.

[23]  T. Simonsson,et al.  G-Quadruplex DNA Structures Variations on a Theme , 2001, Biological chemistry.

[24]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[25]  Kurt V Gothelf,et al.  Probing electron-induced bond cleavage at the single-molecule level using DNA origami templates. , 2012, ACS nano.

[26]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[27]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[28]  Stephen Neidle,et al.  Quadruplex nucleic acids. , 2006 .

[29]  Cech Life at the End of the Chromosome: Telomeres and Telomerase. , 2000, Angewandte Chemie.