Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope

We constructed a high speed and high-resolution Stokes vector retinal imaging polarimeter with dual electro-optical modulators based on adaptive optics scanning laser ophthalmoscope. By varying the voltages on the EO crystals line by line, we were able to measure over 500,000 Stokes vectors per second. We used this system in three human subjects demonstrating the capability of the system to be employed in vivo. The high speed effectively decreases the adverse impact of eye motion induced errors in polarization calculations, improving the contrast of retinal structures based on their polarization properties.

[1]  Masahiro Miura,et al.  Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels. , 2003, Studies in health technology and informatics.

[2]  W. Shurcliff Polarized light; production and use , 1962 .

[3]  Austin Roorda,et al.  Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy , 2005 .

[4]  Daniel X Hammer,et al.  Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  A. Roorda,et al.  High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. , 2007, Investigative ophthalmology & visual science.

[6]  D. Van Norren,et al.  Intensity and polarization of light scattered at small angles from the human fovea , 1986, Vision Research.

[7]  H. Lemij,et al.  Scanning laser polarimetry in a selected group of patients with glaucoma and normal controls. , 2001, American journal of ophthalmology.

[8]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[9]  Ann E Elsner,et al.  Imaging polarimetry in patients with neovascular age-related macular degeneration. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  L. Zangwill,et al.  Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. , 2003, Archives of ophthalmology.

[11]  G. V. van Blokland,et al.  Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[12]  Harald Sattmann,et al.  Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. , 2004, Optics express.

[13]  R. Knighton,et al.  Microtubules contribute to the birefringence of the retinal nerve fiber layer. , 2005, Investigative ophthalmology & visual science.

[14]  C K Hitzenberger,et al.  Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium , 2008, British Journal of Ophthalmology.

[15]  U. Schmidt-Erfurth,et al.  Human macula investigated in vivo with polarization-sensitive optical coherence tomography. , 2006, Investigative ophthalmology & visual science.

[16]  Bryan P. Haggerty,et al.  Determination of foveal location using scanning laser polarimetry. , 2006, Journal of vision.

[17]  Christian Ahlers,et al.  Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[18]  Hongxin Song,et al.  Stokes vector analysis of adaptive optics images of the retina. , 2008, Optics letters.

[19]  T. Andreassen,et al.  Mechanical properties of the human posterior lens capsule. , 2003, Investigative ophthalmology & visual science.

[20]  W. Stiles,et al.  Luminous Efficiency of Rays entering the Eye Pupil at Different Points , 1937, Nature.

[21]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[22]  Jennifer J. Hunter,et al.  Improved scanning laser fundus imaging using polarimetry. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  J. Bueno,et al.  Measurement of parameters of polarization in the living human eye using imaging polarimetry , 2000, Vision Research.

[24]  Donald T. Miller,et al.  Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. , 2008, Optics express.

[25]  R. Alfieri,et al.  Diffusion of the retinal layers of the living human eye , 1984, Vision Research.

[26]  P Artal,et al.  Polarization and retinal image quality estimates in the human eye. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Toco Y P Chui,et al.  Adaptive-optics imaging of human cone photoreceptor distribution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  A. Elsner,et al.  Spatial distribution of macular birefringence associated with the Henle fibers , 2008, Vision Research.

[29]  Stephen A Burns,et al.  Individual variations in human cone photoreceptor packing density: variations with refractive error. , 2008, Investigative ophthalmology & visual science.

[30]  Toyohiko Yatagai,et al.  Imaging polarimetry in age-related macular degeneration. , 2008, Investigative ophthalmology & visual science.

[31]  G. V. van Blokland,et al.  Corneal polarization in the living human eye explained with a biaxial model. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[32]  Ann E Elsner,et al.  Improved contrast of peripapillary hyperpigmentation using polarization analysis. , 2005, Investigative ophthalmology & visual science.

[33]  Masahiko Usui,et al.  Imaging polarimetry and retinal blood vessel quantification at the epiretinal membrane. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  L. Bour,et al.  On the birefringence of the living human eye , 1981, Vision Research.

[35]  Fabrice Manns,et al.  Correcting for Miniature Eye Movements in High Resolution Scanning Laser Ophthalmoscopy , 2005 .

[36]  A. Snyder,et al.  The Stiles-Crawford effect--explanation and consequences. , 1973, Vision research.

[37]  A. Roorda,et al.  Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. , 2005, Ophthalmology.

[38]  R. Knighton,et al.  Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry. , 2000, American journal of ophthalmology.

[39]  L. Zangwill,et al.  Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry. , 2002, Archives of ophthalmology.

[40]  G. D. Francia Retina Cones as Dielectric Antennas , 1949 .

[41]  S. Burns,et al.  In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. , 2008, Optics express.

[42]  A. W. Dreher,et al.  Retinal laser ellipsometry : a new method for measuring the retinal nerve fiber layer thickness distribution ? , 1992 .

[43]  S A Burns,et al.  Direct measurement of human-cone-photoreceptor alignment. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Quinn Smithwick,et al.  Polarimetric imaging and blood vessel quantification. , 2004, Optics express.

[45]  G. V. van Blokland,et al.  Ellipsometry of the human retina in vivo: preservation of polarization. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[46]  R. Knighton,et al.  Linear birefringence of the central human cornea. , 2002, Investigative ophthalmology & visual science.

[47]  R. Chipman,et al.  Mueller matrix retinal imager with optimized polarization conditions. , 2008, Optics express.

[48]  Bernard P. Gee,et al.  In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. , 2006, Optics express.

[49]  W. Stiles,et al.  The Luminous Efficiency of Rays Entering the Eye Pupil at Different Points , 1933 .

[50]  J. Sjöstrand,et al.  Morphometric study of the displacement of retinal ganglion cells subserving cones within the human fovea , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[51]  Andrew Leadbetter,et al.  Evaluation of a dual PEM Stokes polarimeter using different signal processing methods , 2005, SPIE Optics + Photonics.

[52]  A. Fercher,et al.  Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. , 2001, Optics express.

[53]  J. Bueno,et al.  Depolarization effects in the human eye , 2001, Vision Research.

[54]  D. van Norren,et al.  Intensity and polarization of light scattered at small angles from the human fovea. , 1986, Vision research.

[55]  A. Elsner,et al.  Imaging polarimetry in central serous chorioretinopathy. , 2005, American journal of ophthalmology.

[56]  Ann E Elsner,et al.  Improved contrast of subretinal structures using polarization analysis. , 2003, Investigative ophthalmology & visual science.

[57]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..