Nonlinear properties of IMPATT devices

The basic principles of IMPATT diodes as microwave devices are reviewed and the current status of these devices concerning power output and efficiency is given. The main purpose of this paper, however, is to discuss the nonlinear properties of these diodes which are useful in the design of amplifiers, oscillators, and other microwave devices. The main results of this paper are obtained from a digital computer analysis where an approximate, but realistic, diode model is employed. A detailed comparison of complementary silicon diodes as well as GaAs diodes concerning power output and efficiency is given. The effects of doping profile, current density, temperature, and material parameters on the performance of these devices have been investigated and are summarized. Saturation effects which limit the efficiency and power output of these devices are described and optimum efficiencies which can be achieved for various doping profiles are given. A comparison between single-sided and double-drift diodes in both silicon and GaAs is also presented.

[1]  John L. Moll,et al.  Physics of Semiconductors , 1964 .

[2]  J. L. Blue,et al.  A small-signal theory of avalanche noise in IMPATT diodes , 1967 .

[3]  J. R. Collard,et al.  AVALANCHE BREAKDOWN VOLTAGE OF GaAs p+‐n‐n+ DIODE STRUCTURES , 1969 .

[4]  T. Misawa,et al.  Microwave Si avalanche diode with nearly-abrupt-type junction , 1967 .

[5]  Computer calculation of silicon avalanche diodes , 1970 .

[6]  S. Sze,et al.  AVALANCHE BREAKDOWN VOLTAGES OF ABRUPT AND LINEARLY GRADED p‐n JUNCTIONS IN Ge, Si, GaAs, AND GaP , 1966 .

[7]  J. L. Moll,et al.  Temperature dependence of hot electron drift velocity in silicon at high electric field , 1968 .

[8]  J. Leck,et al.  Avalanche breakdown of gallium arsenide p-n junctions† , 1968 .

[9]  A. C. Prior,et al.  The field-dependence of carrier mobility in silicon and germanium , 1960 .

[10]  W. Wiegmann,et al.  THE READ DIODE—AN AVALANCHING, TRANSIT‐TIME, NEGATIVE‐RESISTANCE OSCILLATOR , 1965 .

[11]  T. Misawa,et al.  Minority carrier storage and oscillation efficiency in read diodes , 1970 .

[12]  B. G. Cohen,et al.  Avalanche Breakdown in Gallium Arsenide p-n Junctions , 1962 .

[13]  C. A. Burrus,et al.  Pulse-driven silicon p-n junction avalanche oscillators for the 0.9 to 20 mm band , 1967 .

[14]  W. Moroney,et al.  High power pulsed avalanche diode oscillators for microwave frequencies , 1967 .

[15]  W. T. Read,et al.  A proposed high-frequency, negative-resistance diode , 1958 .

[16]  C. Swan Improved performance of silicon avalanche oscillators mounted on diamond heat sinks , 1967 .

[17]  P. N. Butcher,et al.  Calculation of the velocity-field characteristic for gallium arsenide , 1966 .

[18]  T. Misawa,et al.  Negative resistance in p-n junctions under avalanche breakdown conditions, part II , 1966 .

[19]  G. S. Kino,et al.  Transport Properties of GaAs , 1968 .

[20]  J. Irvin,et al.  Resistivity of bulk silicon and of diffused layers in silicon , 1962 .

[21]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[22]  A. Ward,et al.  Computer comparison of n + --p--p + and p + --n--n + junction silicon diodes for IMPATT oscillators , 1971 .

[23]  D. F. Ciccolella,et al.  Millimeter-wave silicon Impatt diodes , 1969 .

[24]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[25]  D. L. Scharfetter Power-impedance-frequency limitations of IMPATT oscillators calculated from a scaling approximation , 1971 .

[26]  Madhu S. Gupta Noise in avalanche transit-time devices , 1971 .

[27]  Chungho Lee,et al.  Nonlinear Analysis of Multifrequency Operation of Read Diodes , 1970 .

[28]  W. Fawcett,et al.  Calculation of the hot electron diffusion rate for GaAs , 1969 .

[29]  George I. Haddad,et al.  Basic Principles and Properties of Avalanche Transit-Time Devices , 1970 .

[30]  T. Sigmon,et al.  DIFFUSIVITY OF ELECTRONS AND HOLES IN SILICON , 1969 .

[31]  W. J. Evans,et al.  Computer Experiments on TRAPATT Diodes , 1970 .

[32]  V. Dalal HOLE VELOCITY IN p‐GaAs , 1970 .

[33]  D. R. Decker,et al.  The effect of injecting contacts on avalanche diode performance , 1971 .

[34]  G. I. Haddad,et al.  Large-Signal Equivalent Circuits of Avalanche Transit-Time Devices , 1970 .

[35]  N. R. Howard Avalanche Multiplication in Silicon Junctions , 1962 .

[36]  D. Scharfetter Minority carrier injection and charge storage in epitaxial Schottky barrier diodes , 1965 .

[37]  R. L. Johnston,et al.  B.S.T.J. briefs: A silicon diode microwave oscillator , 1965 .

[38]  W. E. Schroeder,et al.  Avalanche region width in various structures of IMPATT diodes , 1971 .

[39]  R. M. Ryder,et al.  Microwave avalanche diodes , 1971 .

[40]  J. Leck,et al.  Temperature dependence of avalanche breakdown in gallium arsenide p—n junctions† , 1968 .

[41]  The effect of junction temperature on the output power of a silicon IMPATT diode , 1972 .

[42]  S. L. Miller Avalanche Breakdown in Germanium , 1955 .

[43]  M. E. Hines,et al.  Electronic tuning effects in the read microwave avalanche diode , 1966 .

[44]  C. R. Crowell,et al.  Temperature dependence of avalanche multiplication in semiconductors , 1966 .

[45]  G. I. Haddad,et al.  A large signal analysis of IMPATT diodes , 1968 .

[46]  J. G. Ruch,et al.  Temperature Dependence of the Transport Properties of Gallium Arsenide Determined by a Monte Carlo Method , 1970 .

[47]  J. L. Blue Approximate large-signal analysis of IMPATT oscillators , 1969 .