Blind quantum computation with identity authentication

Abstract Blind quantum computation (BQC) allows a client with relatively few quantum resources or poor quantum technologies to delegate his computational problem to a quantum server such that the client's input, output, and algorithm are kept private. However, all existing BQC protocols focus on correctness verification of quantum computation but neglect authentication of participants' identity which probably leads to man-in-the-middle attacks or denial-of-service attacks. In this work, we use quantum identification to overcome such two kinds of attack for BQC, which will be called QI-BQC. We propose two QI-BQC protocols based on a typical single-server BQC protocol and a double-server BQC protocol. The two protocols can ensure both data integrity and mutual identification between participants with the help of a third trusted party (TTP). In addition, an unjammable public channel between a client and a server which is indispensable in previous BQC protocols is unnecessary, although it is required between TTP and each participant at some instant. Furthermore, the method to achieve identity verification in the presented protocols is general and it can be applied to other similar BQC protocols.

[1]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[2]  Louis Salvail,et al.  BLIND QUANTUM COMPUTATION , 2003 .

[3]  Guihua Zeng,et al.  Identity verification in quantum key distribution , 2000 .

[4]  Keisuke Fujii,et al.  Blind topological measurement-based quantum computation , 2011, Nature Communications.

[5]  Tomoyuki Morimae Continuous-variable blind quantum computation. , 2012, Physical review letters.

[6]  T. Morimae Verification for measurement-only blind quantum computing , 2012, 1208.1495.

[7]  Shengyu Zhang,et al.  Measurement-device-independent semiquantum key distribution , 2018 .

[8]  Elham Kashefi,et al.  Robustness and device independence of verifiable blind quantum computing , 2015, 1502.02571.

[9]  Keisuke Fujii,et al.  Blind quantum computation over a collective-noise channel , 2016 .

[10]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[11]  Guihua Zeng,et al.  Ja n 20 07 Improving security of quantum identity authentication based on ping-pong technique for photons , 2009 .

[12]  E. Kashefi,et al.  Experimental verification of quantum computation , 2013, Nature Physics.

[13]  Chunhui Wu,et al.  Multiple-server Flexible Blind Quantum Computation in Networks , 2016 .

[14]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[15]  R. Feynman Simulating physics with computers , 1999 .

[16]  E. Kashefi,et al.  Unconditionally verifiable blind quantum computation , 2012, 1203.5217.

[17]  Keisuke Fujii,et al.  Secure entanglement distillation for double-server blind quantum computation. , 2013, Physical review letters.

[18]  T. Morimae,et al.  Ancilla-Driven Universal Blind Quantum Computation , 2012, 1210.7450.

[19]  Qin Li,et al.  Triple-server blind quantum computation using entanglement swapping , 2014 .

[20]  Joseph Fitzsimons,et al.  Optimal Blind Quantum Computation , 2013, Physical review letters.

[21]  Joseph Fitzsimons,et al.  Device-Independent Verifiable Blind Quantum Computation , 2015, ArXiv.

[22]  M. Bourennane,et al.  Authority-based user authentication in quantum key distribution , 2000 .

[23]  Elham Kashefi,et al.  Blind quantum computing with weak coherent pulses. , 2011, Physical review letters.

[24]  Philip Walther,et al.  Demonstration of measurement-only blind quantum computing , 2016, 1601.02451.

[25]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Tomoyuki Morimae,et al.  Efficient universal blind quantum computation. , 2013, Physical review letters.

[27]  Louis Salvail,et al.  Quantum Oblivious Mutual Identification , 1995, EUROCRYPT.

[28]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[29]  Lan Zhou,et al.  Blind quantum computation with a noise channel , 2016, Physical Review A.

[30]  Dongdong Lin,et al.  Cryptanalyzing an Image-Scrambling Encryption Algorithm of Pixel Bits , 2016, IEEE MultiMedia.

[31]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[32]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[33]  Masahito Hayashi,et al.  Verifiable Measurement-Only Blind Quantum Computing with Stabilizer Testing. , 2015, Physical review letters.

[34]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[35]  Elham Kashefi,et al.  Ground state blind quantum computation on AKLT state , 2015, Quantum Inf. Comput..

[36]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[37]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..