Cadm4 restricts the production of cardiac outflow tract progenitor cells.

[1]  Caroline E. Burns,et al.  Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis , 2013, Nature Cell Biology.

[2]  S. Frechter,et al.  Genetic Deletion of Cadm4 Results in Myelin Abnormalities Resembling Charcot-Marie-Tooth Neuropathy , 2013, The Journal of Neuroscience.

[3]  S. Conway,et al.  Cardiac outflow tract anomalies , 2013, Wiley interdisciplinary reviews. Developmental biology.

[4]  Y. Shimono,et al.  Interaction of Necl‐4/CADM4 with ErbB3 and integrin α6β4 and inhibition of ErbB2/ErbB3 signaling and hemidesmosome disassembly , 2013, Genes to cells : devoted to molecular & cellular mechanisms.

[5]  Caroline E. Burns,et al.  Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function , 2013, Development.

[6]  Gergana Dobreva,et al.  The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity. , 2012, Developmental cell.

[7]  R. Kelly The second heart field. , 2012, Current topics in developmental biology.

[8]  J. Waxman,et al.  Restraint of Fgf8 signaling by retinoic acid signaling is required for proper heart and forelimb formation. , 2011, Developmental biology.

[9]  I. Scott,et al.  Mef2cb regulates late myocardial cell addition from a second heart field-like population of progenitors in zebrafish. , 2011, Developmental biology.

[10]  Huai-Jen Tsai,et al.  Zebrafish cardiac development requires a conserved secondary heart field , 2011, Development.

[11]  Caroline E. Burns,et al.  Latent TGFβ binding protein 3 identifies a second heart field in zebrafish , 2011, Nature.

[12]  W. Driever,et al.  DeltaA/DeltaD Regulate Multiple and Temporally Distinct Phases of Notch Signaling during Dopaminergic Neurogenesis in Zebrafish , 2010, The Journal of Neuroscience.

[13]  E. Mittge,et al.  Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88 , 2010, Proceedings of the National Academy of Sciences.

[14]  D. Yelon,et al.  Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function , 2010, Development.

[15]  M. Kirby,et al.  Development and Stem Cells Research Article , 2022 .

[16]  E. Domany,et al.  BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors , 2010, Development.

[17]  C. ffrench-Constant,et al.  Adhesion molecules in the stem cell niche – more than just staying in shape? , 2010, Journal of Cell Science.

[18]  A. Moon,et al.  Role of Mesodermal FGF8 and FGF10 Overlaps in the Development of the Arterial Pole of the Heart and Pharyngeal Arch Arteries , 2010, Circulation research.

[19]  M. Kirby,et al.  The role of secondary heart field in cardiac development. , 2009, Developmental biology.

[20]  M. Kirby,et al.  Sonic hedgehog maintains proliferation in secondary heart field progenitors and is required for normal arterial pole formation. , 2009, Developmental biology.

[21]  L. Clijsters,et al.  Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart , 2009, Development.

[22]  K. Mesbah,et al.  Signaling Pathways Controlling Second Heart Field Development , 2009, Circulation research.

[23]  A. Moorman,et al.  A Caudal Proliferating Growth Center Contributes to Both Poles of the Forming Heart Tube , 2009, Circulation research.

[24]  J. Klingensmith,et al.  An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart , 2008, Development.

[25]  D. Yelon,et al.  Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. , 2008, Developmental biology.

[26]  G. Duester,et al.  Retinoic acid controls heart anteroposterior patterning by down‐regulating Isl1 through the Fgf8 pathway , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[27]  R. Schwartz,et al.  Retinoic acid deficiency alters second heart field formation , 2008, Proceedings of the National Academy of Sciences.

[28]  Catherine A. Wilson,et al.  Six cadm/synCAM genes are expressed in the nervous system of developing zebrafish , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[29]  Steven S. Scherer,et al.  Nectin-like proteins mediate axon–Schwann cell interactions along the internode and are essential for myelination , 2007, The Journal of cell biology.

[30]  R. Milo,et al.  A central role for Necl4 (SynCAM4) in Schwann cell–axon interaction and myelination , 2007, Nature Neuroscience.

[31]  Milena B. Furtado,et al.  An Nkx2-5/Bmp2/Smad1 Negative Feedback Loop Controls Heart Progenitor Specification and Proliferation , 2007, Cell.

[32]  A. Moon,et al.  Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling , 2006, Development.

[33]  Roger M. Ilagan,et al.  Fgf8 is required for anterior heart field development , 2006, Development.

[34]  T. Biederer Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. , 2006, Genomics.

[35]  M. Buckingham,et al.  Building the mammalian heart from two sources of myocardial cells , 2005, Nature Reviews Genetics.

[36]  M. Fishman,et al.  heart of glass Regulates the Concentric Growth of the Heart in Zebrafish , 2003, Current Biology.

[37]  F. Hsieh,et al.  Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[38]  T. Südhof,et al.  SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly , 2002, Science.

[39]  M. Brand,et al.  Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). , 2000, Development.