On structure and representations of cyclic automata

In this paper we study structure and representations of cyclic automata. Corresponding to Green's equivalences in semigroup theory, we introduce three binary relations say L , R and H on cyclic automata. An automaton is said to be strict if L is an equivalence on the set of states. Some properties of these relations are established for giving characterizations of three subclasses of strict automata. Also, we provide representations of strict automata by representing the states as vectors and describing the state transitions in terms of matrix operations. These results generalize and extend Ito's representations of strongly connected automata.

[1]  Gerard P. Weeg The Automorphism Group of the Direct Product of Strongly Related Automata , 1965, JACM.

[2]  Masami Ito A Representation of Strongly Connected Automata and its Applications , 1978, J. Comput. Syst. Sci..

[3]  Arthur C. Fleck On the Automorphism Group of an Automaton , 1965, JACM.

[4]  Gustav Feichtinger Some results on the relation between automata and their automorphism groups , 2006, Computing.

[5]  Bruce H. Barnes,et al.  On the group of automorphisms of strongly connected automata , 1970, Mathematical systems theory.

[6]  Bruce H. Barnes,et al.  Groups of Automorphisms and Sets of Equivalence Classes of Input for Automata , 1965, JACM.

[7]  J. Howie Fundamentals of semigroup theory , 1995 .

[8]  Masami Ito,et al.  Algebraic Theory of Automata & Languages , 2004 .

[9]  Willibald Dörfler The cartesian composition of automata , 2005, Mathematical systems theory.

[10]  R. Bayer Automorphism Groups and Quotients of Strongly Connected Automata and Monadic Algebras , 1966, SWAT.

[11]  Shoichi Noguchi,et al.  A Structure Theory of Automata Characterized by Groups , 1973, J. Comput. Syst. Sci..

[12]  Jerzy W. Grzymala-Busse,et al.  On the endomorphisms of finite automata , 1970, Mathematical systems theory.

[13]  Charles A. Trauth Group-Type Automata , 1966, JACM.

[14]  Hui Xu,et al.  Monoid-matrix type automata , 2014, Theor. Comput. Sci..

[15]  J. Hartmanis,et al.  Algebraic Structure Theory Of Sequential Machines , 1966 .

[16]  J. Hartmanis Algebraic structure theory of sequential machines (Prentice-Hall international series in applied mathematics) , 1966 .

[17]  Peter Deussen,et al.  Halbgruppen und Automaten , 1971, Heidelberger Taschenbücher.

[18]  Zamir Bavel,et al.  Structure and Transition-Preserving Functions of Finite Automata , 1968, JACM.

[19]  Gerard P. Weeg,et al.  The Structure of an Automaton and Its Operation-Preserving Transformation Group , 1962, JACM.

[20]  Ferenc Gécseg,et al.  Algebraic theory of automata , 1972 .

[21]  Jerzy W. Grzymala-Busse Operation-Preserving Functions and Autononous Factors of Finite Automata , 1971, J. Comput. Syst. Sci..

[22]  伊藤 正美 Algebraic theory of automata and languages , 2004 .

[23]  Jing Tian,et al.  Representations of commutative asynchronous automata , 2012, J. Comput. Syst. Sci..

[24]  Arthur C. Fleck,et al.  Isomorphism Groups of Automata , 1962, JACM.