A spectral condition for odd cycles in graphs

Abstract Let G be a graph of sufficiently large order n , and let the largest eigenvalue μ ( G ) of its adjacency matrix satisfies μ ( G ) > ⌊ n 2 / 4 ⌋ . Then G contains a cycle of length t for every t ⩽ n / 320 This condition is sharp: the complete bipartite graph T 2 ( n ) with parts of size ⌊ n / 2 ⌋ and ⌈ n / 2 ⌉ contains no odd cycles and its largest eigenvalue is equal to ⌊ n 2 / 4 ⌋ . This condition is stable: if μ ( G ) is close to ⌊ n 2 / 4 ⌋ and G fails to contain a cycle of length t for some t ⩽ n / 321 , then G resembles T 2 ( n ) .

[1]  V. Nikiforov Eigenvalues and forbidden subgraphs I , 2006, math/0608329.

[2]  Richard H. Schelp,et al.  Cycle lengths in graphs with large minimum degree , 2006, J. Graph Theory.

[3]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[4]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[5]  Béla Bollobás,et al.  Cliques and the spectral radius , 2007, J. Comb. Theory, Ser. B.

[6]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[7]  Vladimir Nikiforov The smallest eigenvalue of Kr-free graphs , 2006, Discret. Math..

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[10]  Eva Nosal,et al.  Eigenvalues of graphs , 1970 .

[11]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[12]  Vladimir Nikiforov,et al.  Spectral Saturation: Inverting the Spectral Turán Theorem , 2007, Electron. J. Comb..

[13]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[14]  V. Nikiforov Bounds on graph eigenvalues I , 2006, math/0602027.