Preparation and characterization of Si3N4-based composite ceramic tool materials by microwave sintering

[1]  Haibo Long,et al.  Effect of addition of micron-sized TiC particles on mechanical properties of Si3N4 matrix composites , 2017 .

[2]  Zhenhua Wang,et al.  Effects of sintering additives on mechanical properties and microstructure of Si3N4 ceramics by microwave sintering , 2017 .

[3]  Weiming Guo,et al.  Rapid fabrication of Si3N4 ceramics by reaction-bonding and pressureless sintering , 2016 .

[4]  Guo‐Jun Zhang,et al.  Chemical reactivity of hot-pressed Si3N4–ZrB2 ceramics at 1500–1700 °C , 2015 .

[5]  Cheng Xin,et al.  The densification of Si3N4 ceramics using different additives via microwave sintering , 2014 .

[6]  Yujun Zhang,et al.  Gas pressure sintering of BN/Si3N4 wave-transparent material with Y2O3–MgO nanopowders addition , 2014 .

[7]  L. Shaw,et al.  Liquid phase sintering of Si3N4/SiC nanopowders derived from silica fume , 2014 .

[8]  Yi-bing Cheng,et al.  Microstructures and properties of Si3N4/TiN composites sintered by hot pressing and spark plasma sintering , 2013 .

[9]  Jun Zhao,et al.  Thermal shock and thermal fatigue resistance of Sialon–Si3N4 graded composite ceramic materials , 2012 .

[10]  Y. Yoshizawa,et al.  Effects of MgO addition on the microwave dielectric properties of high thermal-conductive silicon nitride ceramics sintered with ytterbia as sintering additives , 2012 .

[11]  Jun Zhao,et al.  Friction and wear behaviors of Sialon–Si3N4 graded nano-composite ceramic materials in sliding wear tests and in cutting processes , 2012 .

[12]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[13]  B. Matović,et al.  Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures , 2010 .

[14]  S. Chockalingam,et al.  Microwave sintering of Si3N4 with LiYO2 and ZrO2 as sintering additives , 2010 .

[15]  S. Chockalingam,et al.  Mechanical properties of 2.45 GHz microwave sintered Si3N4–Y2O3–MgO–ZrO2 system , 2009 .

[16]  H. L. Liu,et al.  Preparation and characterization of Si3N4/TiN nanocomposites ceramic tool materials , 2009 .

[17]  Bin Zou,et al.  Study on the mechanical properties, microstructure and oxidation resistance of Si3N4/Si3N4W/Ti(C7N3) nanocomposites ceramic tool materials , 2009 .

[18]  S. Chockalingam,et al.  Phase Transformation and Densification Behavior of Microwave-Sintered Si3N4–Y2O3–MgO–ZrO2 System , 2009 .

[19]  Jun Zhao,et al.  Preparation and characterization of Si3N4/TiC nanocomposite ceramics , 2006 .

[20]  M. Toriyama,et al.  Densification Behavior in Microwave-Sintered Silicon Nitride at 28 GHz , 2004 .

[21]  Jow-Lay Huang,et al.  Tribological characteristics of Si3N4-based composites in unlubricated sliding against steel ball , 2004 .

[22]  M. Toriyama,et al.  Grain growth in millimeter wave sintered silicon nitride ceramics , 2004 .

[23]  K. Hirao,et al.  Grain growth in microwave sintered Si3N4 ceramics sintered from different starting powders , 2002 .

[24]  M. Lewis,et al.  Mechanical properties and tribology of Si3N4–TiB2 ceramic composites produced by hot pressing and hot isostatic pressing , 2001 .

[25]  D. K. Kim,et al.  Effect of microwave heating on densification and α → β phase transformation of silicon nitride , 1997 .

[26]  E. A. Charles,et al.  Fracture Toughness Determinations by Indentation , 1976 .