On the applicability of the classical nucleation theory in an Ising system

Large-scale dynamic Monte Carlo simulations of a lattice gas on a 2000×2000 square lattice with a Glauber-type spin flip dynamics were performed. The results are discussed in the light of classical nucleation theory (CNT) which can be fully specified for the problem due to the availability of exact values for the interfacial energy of a large nucleus, known from the Onsager solution. Several alternative (field-theoretic or nonclassical) descriptions were also considered. Special attention was paid to the pre-exponential in the cluster distribution function and to the finite-size corrections to the interfacial energies which are required in order to comply with observations. If taken literally, the CNT produces large errors when predicting either the cluster distribution function or the nucleation rate. However, at intermediate temperatures (up to 0.7 Tc) the correspondence can be substantially improved by considering the low-temperature properties of small clusters and adjusting the pre-exponential. At hi...

[1]  D. Heermann,et al.  Nucleation and Growth of Nonclassical Droplets , 1983 .

[2]  A. Einstein,et al.  Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes [AdP 33, 1275 (1910)] , 2005, Annalen der Physik.

[3]  Antonio Coniglio,et al.  Clusters and Ising critical droplets: a renormalisation group approach , 1980 .

[4]  Metastable lifetimes in a kinetic Ising model: Dependence on field and system size. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  M. Ernst,et al.  Kinetics of reversible polymerization , 1984 .

[6]  C. Rottman,et al.  Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions , 1984 .

[7]  Dynamics of Ising ferromagnets in droplet model , 1991 .

[8]  J. Frankel Kinetic theory of liquids , 1946 .

[9]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[10]  S. Sides,et al.  Magnetization switching in nanoscale ferromagnetic grains: description by a kinetic Ising model , 1994, cond-mat/9412120.

[11]  J. Avron,et al.  Total surface energy and equilibrium shapes: Exact results for the d=2 Ising crystal , 1982 .

[12]  Roberto H. Schonmann,et al.  Wulff Droplets and the Metastable Relaxation of Kinetic Ising Models , 1998 .

[13]  K. A. Jackson,et al.  Orientation dependence of the distribution coefficient obtained from a spin-1 Ising model , 1997 .

[14]  J. Deubener,et al.  Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses , 1993 .

[16]  R. Kotecḱy,et al.  Droplet dynamics for asymmetric Ising model , 1993 .

[17]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[18]  George Ruppeiner,et al.  Riemannian geometry in thermodynamic fluctuation theory , 1995 .

[19]  Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics , 1998, cond-mat/9811079.

[20]  Ising Droplets, Nucleation, and Stretched Exponential Relaxation , 1992 .

[21]  Kurt Binder,et al.  Theory for the dynamics of "clusters." II. Critical diffusion in binary systems and the kinetics of phase separation , 1977 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  J. Marchand,et al.  A microscopic derivation of the classical nucleation equation , 1984 .

[24]  A. Laaksonen,et al.  Thermodynamics, gas-liquid nucleation, and size-dependent surface tension , 1996 .

[25]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[26]  G. Uhlenbeck,et al.  Studies in statistical mechanics , 1962 .

[27]  Jack Carr,et al.  The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions , 1986 .

[28]  J. H. Gibbs,et al.  Molecular theory of surface tension , 1975 .

[29]  Beale,et al.  Grain-size effects in ferroelectric switching. , 1990, Physical review. B, Condensed matter.

[30]  G. Wilemski The Kelvin equation and self‐consistent nucleation theory , 1995 .

[31]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[32]  C. Rottman,et al.  Exact equilibrium crystal shapes at nonzero temperature in two dimensions , 1981 .

[33]  V. Shneidman Dynamics of an Ising ferromagnet at T⩽ Tc from the droplet model approach , 1992 .

[34]  J. Weeks,et al.  Structural Transition in the Ising-Model Interface , 1973 .

[35]  K. Binder,et al.  Evidence for Fisher's Droplet Model in Simulated Two-Dimensional Cluster Distributions , 1972 .

[36]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[37]  J. Lebowitz,et al.  Computer Simulation of the Time Evolution of a Quenched Model Alloy in the Nucleation Region , 1979 .

[38]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[39]  K. A. Jackson,et al.  NUCLEATION AND GROWTH OF A STABLE PHASE IN AN ISING-TYPE SYSTEM , 1999 .

[40]  R. Westervelt Nucleation Phenomena in Electron-Hole Drop Formation in Ge and Si. II. Application to Observable Phenomena , 1976 .

[41]  A. C. Zettlemoyer,et al.  Homogeneous Nucleation Theory , 1974 .

[42]  Application of a constrained-transfer-matrix method to metastability in the d = 2 Ising ferromagnet , 1994, cond-mat/9406114.

[43]  Michael E. Fisher,et al.  Interfacial, Boundary, and Size Effects at Critical Points , 1967 .

[44]  J. Katz Homogeneous nucleation theory and experiment: A survey , 1992 .

[45]  R. Zia Exact equilibrium shapes of Ising crystals on triangular/honeycomb lattices , 1986 .

[46]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[47]  D. Oxtoby,et al.  The effect of density change on crystal growth rates from the melt , 1992 .