Undervalued potential of crassulacean acid metabolism for current and future agricultural production

A review of the agricultural value of plants that use crassulacean acid metabolism, spanning traditional knowledge and uses, recent genomic discoveries, physiological adaptations, and known commercial values.

[1]  J. Holtum,et al.  Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. , 2005, Functional plant biology : FPB.

[2]  M. Turjaman,et al.  Effect of Arbuscular Mycorrhizal Colonization on Nitrogen and Phosphorus Uptake and Growth of Aloe vera L. , 2007 .

[3]  David Sankoff,et al.  The pineapple genome and the evolution of CAM photosynthesis , 2015, Nature Genetics.

[4]  Rajeev K. Varshney,et al.  Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects , 2015, Front. Plant Sci..

[5]  J. Leebens-Mack,et al.  Altered Gene Regulatory Networks Are Associated With the Transition From C3 to Crassulacean Acid Metabolism in Erycina (Oncidiinae: Orchidaceae) , 2018, bioRxiv.

[6]  A. Rathod,et al.  FLORAL AND REPRODUCTIVE PHENOLOGY OF ALOE VERA , 2014 .

[7]  R. Kiesling,et al.  Identity and Neotypification of Cereus macrogonus, the Type Species of the Genus Trichocereus (Cactaceae) , 2012 .

[8]  H. Jones,et al.  Effects of NaCl Salinity on Growth and Production of Young Cladodes of Opuntia ficus-indica , 2001 .

[9]  S. Davis,et al.  A model of environmental limitations on production of Agave americana L. grown as a biofuel crop in semi-arid regions , 2018, Journal of experimental botany.

[10]  K. Eshun,et al.  Aloe Vera: A Valuable Ingredient for the Food, Pharmaceutical and Cosmetic Industries—A Review , 2004, Critical reviews in food science and nutrition.

[11]  D. Weston,et al.  Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy. , 2015, Plant, cell & environment.

[12]  W. Abdo,et al.  Anticancer activity of Aloe vera and Calligonum comosum extracts separetely on hepatocellular carcinoma cells , 2015 .

[13]  Zhaopu Liu,et al.  Physiological and ecological characters studies on Aloe vera under soil salinity and seawater irrigation , 2007 .

[14]  A. Porporato,et al.  Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model , 2018, Ecological Modelling.

[15]  J. Hartwell,et al.  Transgenic Perturbation of the Decarboxylation Phase of Crassulacean Acid Metabolism Alters Physiology and Metabolism But Has Only a Small Effect on Growth1[OPEN] , 2014, Plant Physiology.

[16]  J. A. Reyes-Agüero,et al.  AGROBIODIVERSITY OF CACTUS PEAR (OPUNTIA, CACTACEAE) IN THE MERIDIONAL HIGHLANDS PLATEAU OF MEXICO , 2011 .

[17]  Xiaohan Yang,et al.  Development and use of bioenergy feedstocks for semi-arid and arid lands. , 2015, Journal of experimental botany.

[18]  T. Tschaplinski,et al.  Engineering crassulacean acid metabolism to improve water-use efficiency. , 2014, Trends in plant science.

[19]  F. Nejatzadeh-Barandozi,et al.  Karyotypic Variation of the Aloe vera L. and Aloe littoralis Baker in Iran , 2013 .

[20]  F. Moreno,et al.  Effects of light intensity on the morphology and CAM photosynthesis of Vanilla planifolia Andrews , 2017 .

[21]  H. Griffiths,et al.  Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates (Agave fourcroydes, Agave salmiana, Agave tequilana and Opuntia ficus‐indica) in Australia , 2014 .

[22]  R. Betts,et al.  Global Changes in Drought Conditions Under Different Levels of Warming , 2018 .

[23]  Luis Escamilla-Treviño Potential of Plants from the Genus Agave as Bioenergy Crops , 2012, BioEnergy Research.

[24]  E. Raveh,et al.  Adaptation of five columnar cactus species to various conditions in the negev desert of Israel , 1993, Economic Botany.

[25]  Axel Visel,et al.  De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana , 2013, BMC Genomics.

[26]  A. Karadi,et al.  Salt tolerance of prickly pear cactus (Opuntia ficus-indica) , 1991, Plant and Soil.

[27]  Deborah A. Weighill,et al.  The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism , 2017, Nature Communications.

[28]  K. Dixon,et al.  Perspectives on orchid conservation in botanic gardens. , 2009, Trends in plant science.

[29]  B. S. Khatkar,et al.  Processing, food applications and safety of aloe vera products: a review , 2011, Journal of food science and technology.

[30]  P. Colunga-Garcíamarín,et al.  Agave studies in Yucatan, Mexico. I. Past and present germplasm diversity and uses , 1993, Economic Botany.

[31]  B. C. Ghosh,et al.  PERFORMANCE OF ALOE VERA AS INFLUENCED BY ORGANIC AND INORGANIC SOURCES OF FERTILIZER SUPPLIED THROUGH FERTIGATION , 2005 .

[32]  W. M. Whitten,et al.  Evolution along the crassulacean acid metabolism continuum , 2010 .

[33]  D. Soltis,et al.  Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. , 2012, American journal of botany.

[34]  G. Barbera,et al.  Agro-ecology, cultivation, and uses of cactus pear , 1995 .

[35]  E. M. Yahia,et al.  Postharvest biology and technology of tropical and subtropical fruits. Volume 3: cocona to mango. , 2011 .

[36]  A. Weber,et al.  Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare1[OPEN] , 2015, Plant Physiology.

[37]  R. Felger,et al.  People of the Desert and Sea: Ethnobotany of the Seri Indians , 1985 .

[38]  D. Roberts,et al.  A review of the trade in orchids and its implications for conservation , 2018 .

[39]  Chen Ding,et al.  A polysaccharide from Aloe vera L. var. chinensis (Haw.) Berger prevents damage to human gastric epithelial cells in vitro and to rat gastric mucosa in vivo , 2016 .

[40]  M. D. J. Yáñez-Morales,et al.  Características y productividad de una planta MAC, Agave tequilana desarrollada con fertigación en Tamaulipas, México , 2018 .

[41]  K. G. Rohrbach,et al.  History, distribution and world production , 2003 .

[42]  V. Albert,et al.  A genome to unveil the mysteries of orchids , 2014, Nature Genetics.

[43]  P. Nobel,et al.  Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2 , 1994 .

[44]  E. Esparza-Ibarra,et al.  Los agaves mezcaleros del altiplano Potosino y Zacatecano , 2015 .

[45]  J. Holtum,et al.  Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna. , 2017, Journal of plant physiology.

[46]  E. Yahia,et al.  Cactus pear (Opuntia species). , 2011 .

[47]  M. L. Díaz,et al.  Frecuencia optima de riego y fertilización en Aloë vera L. , 1993 .

[48]  E. Komatsu,et al.  Annual Report 2017 , 2018 .

[49]  R. Wyatt,et al.  The consequences of self-pollination in Asclepias exaltata, a self-incompatible milkweed , 1993 .

[50]  F. Stintzing,et al.  Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. , 2006, Frontiers in bioscience : a journal and virtual library.

[51]  P. Nobel,et al.  Productivity of Agave deserti: measurement by dry weight and monthly prediction using physiological responses to environmental parameters , 1984, Oecologia.

[52]  H. Silva,et al.  Effect of water availability on growth and water use efficiency for biomass and gel production in Aloe Vera (Aloe barbadensis M.) , 2010 .

[53]  N. Bunyapraphatsara,et al.  Antidiabetic activity of Aloe vera L. juice II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. , 1996, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[54]  R. Paull,et al.  Exotic Fruits and Nuts of the New World , 2015 .

[55]  Mercedes G. López,et al.  Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. , 2006, Journal of agricultural and food chemistry.

[56]  Emily R. Kuzmick,et al.  Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands , 2017 .

[57]  A. Casas,et al.  Use of columnar cacti in the Tehuacán Valley, Mexico: perspectives for sustainable management of non-timber forest products , 2014, Journal of Ethnobiology and Ethnomedicine.

[58]  L. Burgess,et al.  Fusarium species associated with vanilla stem rot in Indonesia , 2010, Australasian Plant Pathology.

[59]  Hongfei Lin,et al.  Biomass characterization of Agave and Opuntia as potential biofuel feedstocks , 2015 .

[60]  M. Baliga,et al.  An Aloe Vera-Based Cosmeceutical Cream Delays and Mitigates Ionizing Radiation-Induced Dermatitis in Head and Neck Cancer Patients Undergoing Curative Radiotherapy: A Clinical Study , 2017, Medicines.

[61]  M. Sanderson,et al.  Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti , 2017, Proceedings of the National Academy of Sciences.

[62]  P. Felker,et al.  The prickly-pears (Opuntia spp., Cactaceae): A source of human and animal food in semiarid regions , 1987, Economic Botany.

[63]  H. Snyman Root distribution with changes in distance and depth of two-year-old cactus pears Opuntia ficus-indica and O. robusta plants , 2006 .

[64]  J. Simpson,et al.  Taxonomic implications of the morphological and genetic variation of cultivated and domesticated populations of the Agave angustifolia complex (Agavoideae, Asparagaceae) in Oaxaca, Mexico , 2018, Plant Systematics and Evolution.

[65]  D. Voytas,et al.  Genome Editing for Crop Improvement – Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.) , 2018, Front. Plant Sci..

[66]  R. Menezes,et al.  Potential for biofuels from the biomass of prickly pear cladodes: Challenges for bioethanol and biogas production in dry areas , 2016 .

[67]  K. G. Rohrbach,et al.  The pineapple: botany, production and uses. , 2003 .

[68]  G. Barbera,et al.  Mesoamerican Domestication and Diffusion , 2002 .

[69]  P. Nobel,et al.  Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica. , 2003, The New phytologist.

[70]  Jun Lu,et al.  Construction and Evaluation of Normalized cDNA Libraries Enriched with Full-Length Sequences for Rapid Discovery of New Genes from Sisal (Agave sisalana Perr.) Different Developmental Stages , 2012, International journal of molecular sciences.

[71]  Mercedes G. López,et al.  Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones. , 2015, Food & function.

[72]  E. Edwards,et al.  Angiosperm Responses to a Low-CO2 World: CAM and C4 Photosynthesis as Parallel Evolutionary Trajectories , 2012, International Journal of Plant Sciences.

[73]  O. Olatunya,et al.  Preliminary trial of aloe vera gruel on HIV infection. , 2012, Journal of alternative and complementary medicine.

[74]  P. Choudhary,et al.  DIVERSITY ANALYSIS OF DIFFERENT ACCESSIONS OF ALOE BARBADENSIS MILL. (SYN. ALOE VERA .L) COLLECTED FROM RAJASTHAN USING RAPD MARKER SYSTEM , 2014 .

[75]  B. Añez,et al.  Efecto de la densidad de población sobre el crecimiento y rendimiento de la zábila (Aloe barbadensis M.) , 2005 .

[76]  J. A. Smith,et al.  Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species , 2015 .

[77]  E. Pimienta-Barrios Prickly pear (Opuntia spp.): A valuable fruit crop for the semi-arid lands of Mexico , 1994 .

[78]  Bikram Singh,et al.  Saponins of Agave: Chemistry and bioactivity. , 2016, Phytochemistry.

[79]  C. Boyer Bound in Twine: The History and Ecology of the Henequen-Wheat Complex for Mexico and the American and Canadian Plains, 1880–1950 , 2009 .

[80]  M. Cantwell,et al.  Prickly Pear Fruit Development and Quality in Relation to Gibberellic Acid Applications to Intact and Emasculated Flower Buds , 2003 .

[81]  A. Diévart,et al.  Post genomics era for orchid research , 2017, Botanical Studies.

[82]  R. Carrillo-González,et al.  Soil fertility properties on Agave angustifolia Haw. plantations , 2007 .

[83]  P. Felker,et al.  Correlations between soil and cladode nutrient concentrations and fruit yield and quality in cactus pears, Opuntia ficus indica in a traditional farm setting in Argentina , 2004 .

[84]  N. Nayanakantha,et al.  Assessment of genetic diversity in Aloe germplasm accessions from India using RAPD and morphological markers , 2010 .

[85]  M. Symonds,et al.  Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera , 2015, BMC Evolutionary Biology.

[86]  Klaus Winter,et al.  Crassulacean Acid Metabolism and Epiphytism Linked to Adaptive Radiations in the Orchidaceae1[OA] , 2009, Plant Physiology.

[87]  Rudolf Schmid,et al.  The Great Cacti: Ethnobotany and Biogeography , 2007 .

[88]  L. Partida-Martínez,et al.  The Microbiome of Desert CAM Plants: Lessons From Amplicon Sequencing and Metagenomics , 2018 .

[89]  Atta-ur-rahman,et al.  Aloe Vera Gel in Food, Health Products, and Cosmetics Industry , 2014 .

[90]  F. Bolivar,et al.  Pulque, a Traditional Mexican Alcoholic Fermented Beverage: Historical, Microbiological, and Technical Aspects , 2016, Front. Microbiol..

[91]  H. Snyman Growth Rate and Water-Use Efficiency of Cactus Pears Opuntia ficus-indica and O. robusta , 2013 .

[92]  K. Koch,et al.  Characteristics of Crassulacean Acid Metabolism in the Succulent C(4) Dicot, Portulaca oleracea L. , 1980, Plant physiology.

[93]  E. Yahia Prickly Pear Fruit and Cladodes , 2012 .

[94]  Y. Farbood,et al.  Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats. , 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[95]  J. Guevara,et al.  Opuntia ellisiana: Cold Hardiness, Above-Ground Biomass Production and Nutritional Quality in the Mendoza Plain, Argentina ♦ , 2003 .

[96]  M. Kornaros,et al.  Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. , 2018, Journal of environmental management.

[97]  S. Rao,et al.  Vanilla flavour: production by conventional and biotechnological routes , 2000 .

[98]  I. Sache,et al.  Fusarium oxysporum f. sp. radicis-vanillae is the causal agent of root and stem rot of vanilla , 2016 .

[99]  Howard Griffiths,et al.  Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. , 2009, Journal of experimental botany.

[100]  J. Bruhn Carnegiea gigantea: The saguaro and its uses , 1971, Economic Botany.

[101]  T. Ticktin,et al.  Patterns of growth in Aechmea magdalenae (Bromeliaceae) and its potential as a forest crop and conservation strategy , 2003 .

[102]  J. Arditti Fundamentals of orchid biology , 1992 .

[103]  C. Osmond,et al.  Crassulacean Acid Metabolism , 1996, Ecological Studies.

[104]  R. Dubos [ENVIRONMENTAL BIOLOGY]. , 1964, Revista medica de Chile.

[105]  Laurent Jouve,et al.  Vanilla planifolia: history, botany and culture in Reunion island , 1999 .

[106]  Atia B. Amin,et al.  Crassulacean Acid Metabolism Abiotic Stress-Responsive Transcription Factors: a Potential Genetic Engineering Approach for Improving Crop Tolerance to Abiotic Stress , 2019, Front. Plant Sci..

[107]  E. Achigan-Dako,et al.  Plant Resources of Tropical Africa 16 Fibres , 2012 .

[108]  A. G. Mendoza Los agaves de méxico , 2009 .

[109]  G. Barbera,et al.  Research strategies for the improvement of cactuspear (Opuntia ficus-indica) fruit quality and production , 1995 .

[110]  T. Schartel,et al.  Biotic constraints on Cactoblastis cactorum (Berg) host use in the southern US and their implications for future spread , 2018, Food Webs.

[111]  Stephen P. Long,et al.  The global potential for Agave as a biofuel feedstock , 2011 .

[112]  G. Meehl,et al.  Near-term climate change:projections and predictability , 2013 .

[113]  Howard Griffiths,et al.  A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases. , 2013, The New phytologist.

[114]  M. Bhat,et al.  Eat your orchid and have it too: a potentially new conservation formula for Chinese epiphytic medicinal orchids , 2014, Biodiversity and Conservation.

[115]  Karen Schlauch,et al.  A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. , 2015, The New phytologist.

[116]  R. Dixon,et al.  A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. , 2017, Phytochemistry.

[117]  J. Simpson,et al.  Genomic resources and transcriptome mining in Agave tequilana , 2011 .

[118]  Deborah A. Weighill,et al.  Transcript, protein and metabolite temporal dynamics in the CAM plant Agave , 2016, Nature Plants.

[119]  Park S. Nobel,et al.  High annual productivity of certain agaves and cacti under cultivation , 1992 .

[120]  Matthew B. Ogburn,et al.  Variations On A Theme: Repeated Evolution Of Succulent Life Forms In the Portulacineae (Caryophyllales) , 2008 .

[121]  J. Dubeux,et al.  Productivity of Opuntia ficus-indica (L.) Miller under different N and P fertilization and plant population in north-east Brazil , 2006 .

[122]  M. D. Curt,et al.  Assessment of the bioethanol potential of prickly pear (Opuntia ficus-indica (L.) Mill.) biomass obtained from regular crops in the province of Almeria (SE Spain) , 2013 .

[123]  K. G. Rohrbach,et al.  Crop environment, plant growth and physiology , 2003 .

[124]  B. Aliakbarian,et al.  Phenolics extraction from Agave americana (L.) leaves using high-temperature, high-pressure reactor , 2012 .

[125]  H. S. Gentry,et al.  Agaves of Continental North America. , 1983 .

[126]  W. C. Yim,et al.  Laying the Foundation for Crassulacean Acid Metabolism (CAM) Biodesign: Expression of the C4 Metabolism Cycle Genes of CAM in Arabidopsis , 2019, Front. Plant Sci..

[127]  J. Holtum,et al.  Agave as a biofuel feedstock in Australia , 2011 .

[128]  M. Chung,et al.  The wound‐healing effect of a glycoprotein fraction isolated from aloe vera , 2001, The British journal of dermatology.

[129]  S. Davis,et al.  Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions. , 2014, Journal of experimental botany.

[130]  R. Guevara-González,et al.  Mexican crops of agroalimentary importance. , 2006 .

[131]  B. Escalante,et al.  Antiinflammatory activity of extracts from Aloe vera gel. , 1996, Journal of Ethnopharmacology.

[132]  R. Verpoorte,et al.  VANILLA PRODUCTION: TECHNOLOGICAL, CHEMICAL, AND BIOSYNTHETIC ASPECTS , 2001 .

[133]  D. Havkin-Frenkel Vanillin , 2018, Kirk-Othmer Encyclopedia of Chemical Technology.

[134]  D. Katerere Commercialization of Plant-Based Medicines in South Africa , 2018 .

[135]  R. Carle,et al.  Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. , 2005, Molecular nutrition & food research.

[136]  M. Naghavi,et al.  Genetic diversity of accessions of Iranian Aloe vera based on horticultural traits and RAPD markers , 2012 .

[137]  C. Sharma,et al.  Aloe vera inhibits proliferation of human breast and cervical cancer cells and acts synergistically with cisplatin. , 2015, Asian Pacific journal of cancer prevention : APJCP.

[138]  P. Nobel,et al.  Shrinkage of attached roots of Opuntia ficus-indica in response to lowered water potentials - predicted consequences for water uptake or loss to soil. , 1992 .

[139]  J. Brewbaker,et al.  GENETICS OF SELF-INCOMPATIBILITY IN THE MONOCOT GENERA, ANANAS (PINEAPPLE) AND GASTERIA , 1967 .

[140]  J. Hartwell,et al.  Phosphorylation of Phosphoenolpyruvate Carboxylase Is Essential for Maximal and Sustained Dark CO2 Fixation and Core Circadian Clock Operation in the Obligate Crassulacean Acid Metabolism Species Kalanchoë fedtschenkoi[CC-BY] , 2017, Plant Cell.

[141]  J. Fresnedo,et al.  The edible fruit species in Mexico , 2018, Genetic Resources and Crop Evolution.

[142]  V. C. Moran,et al.  Critical reviews of biological pest control in South Africa. 2. The prickly pear, Opuntia ficus-indica (L.) Miller. , 1978 .

[143]  D. Zohary Pulse domestication and cereal domestication: How different are they? , 2008, Economic Botany.

[144]  Erik S. Runkle,et al.  Environmental Physiology of Growth and Flowering of Orchids , 2005 .

[145]  M. Griffith,et al.  The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. , 2004, American journal of botany.

[146]  Xun Xu,et al.  The genome sequence of the orchid Phalaenopsis equestris , 2014, Nature Genetics.

[147]  Héctor Miguel Trujillo-Arriaga,et al.  Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women , 2013, Food & nutrition research.

[148]  D. Roberts,et al.  Heterogeneity in consumer preferences for orchids in international trade and the potential for the use of market research methods to study demand for wildlife , 2015, Biological Conservation.

[149]  S. Tiwari,et al.  Assessment of genetic diversity among Aloe vera accessions using amplified fragment length polymorphism. , 2011 .

[150]  M. Kluge,et al.  Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation , 1978 .

[151]  D. Piñero,et al.  Isozymatic variation and phylogenetic relationships between henequen (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). , 1999, American journal of botany.

[152]  A. Nègre-Salvayre,et al.  Opuntia spp.: Characterization and Benefits in Chronic Diseases , 2017, Oxidative medicine and cellular longevity.

[153]  R. Gorelick The Great Cacti: Ethnobotany and Biogeography , 2008 .

[154]  Park S. Nobel,et al.  The Cactus Primer , 1986 .

[155]  K. G. Rohrbach,et al.  Morphology, anatomy and taxonomy , 2003 .

[156]  J. E. Valle,et al.  Nutrimentos y carbohidratos en plantas de Agave angustifolia Haw. y Agave karwinskii Zucc* Nutrients and carbohydrates in plants from Agave angustifolia Haw. and Agave karwinskii Zucc , 2013 .

[157]  C. B. Peña-Valdivia,et al.  Diversity of Unavailable Polysaccharides and Dietary Fiber in Domesticated Nopalito and Cactus Pear Fruit (Opuntia spp.) , 2012, Chemistry & biodiversity.

[158]  J. López‐Cervantes,et al.  Aloe vera: Ancient knowledge with new frontiers , 2017 .

[159]  N. Tel-Zur,et al.  Fruits of Vine and Columnar Cacti , 2002 .

[160]  J. Gambiza,et al.  Invasive plants – friends or foes? Contribution of prickly pear (Opuntia ficus-indica) to livelihoods in Makana Municipality, Eastern Cape, South Africa , 2011 .

[161]  M. Debnath,et al.  Biotechnological intervention of Agave Sisalana: A unique fiber yielding plant with medicinal property , 2004 .

[162]  J. Hartwell,et al.  Emerging model systems for functional genomics analysis of Crassulacean acid metabolism. , 2016, Current opinion in plant biology.

[163]  M. Kluge,et al.  Characterization of carbon metabolism in Opuntia ficus-indica Mill. exhibiting the idling mode of Crassulacean acid metabolism , 2004, Planta.

[164]  Sterling Evans Bound in Twine: The History and Ecology of the Henequen-Wheat Complex for Mexico and the American and Canadian Plain , 2008 .

[165]  L. Eguiarte,et al.  Genetic diversity of the endangered endemic Agave victoriae-reginae (Agavaceae) in the Chihuahuan Desert. , 1999, American journal of botany.

[166]  R. Gorelick Food Plants of the Sonoran Desert , 2005 .

[167]  L. Iglesias-Andreu,et al.  Light quality affects growth and development of in vitro plantlet of Vanilla planifolia Jacks , 2017 .

[168]  Daphna Havkin-Frenkel,et al.  Handbook of Vanilla Science and Technology , 2010 .

[169]  P. Nobel,et al.  Cacti : biology and uses , 2002 .

[170]  Gerald A Tuskan,et al.  Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. , 2018, Plant science : an international journal of experimental plant biology.

[171]  Daniel K. Y. Tan,et al.  Life cycle energy and greenhouse gas analysis for agave-derived bioethanol , 2011 .

[172]  A. Boligon,et al.  Anti-inflammatory and antioxidant effects of Aloe saponaria Haw in a model of UVB-induced paw sunburn in rats. , 2014, Journal of photochemistry and photobiology. B, Biology.

[173]  M. Fay Orchid conservation: how can we meet the challenges in the twenty-first century? , 2018, Botanical Studies.

[174]  M. Sindic,et al.  Biology, Flowering and Fruiting of the Cactus Opuntia spp.: A Review and Some Observations on Three Varieties in Morocco , 2017 .

[175]  I. Tzouramani,et al.  Economic Sustainability of Organic Aloe Vera Farming in Greece under Risk and Uncertainty , 2016 .

[176]  V. Tryndyak,et al.  From the Cover: Aloin, a Component of the Aloe Vera Plant Leaf, Induces Pathological Changes and Modulates the Composition of Microbiota in the Large Intestines of F344/N Male Rats , 2017, Toxicological sciences : an official journal of the Society of Toxicology.

[177]  Jeremy Woods,et al.  The potential of CAM crops as a globally significant bioenergy resource: moving from ‘fuel or food’ to ‘fuel and more food’ , 2015 .

[178]  J. A. Smith,et al.  Crassulacean Acid Metabolism: Current Status and Perspectives , 1996 .

[179]  A deep transcriptomic analysis of pod development in the vanilla orchid (Vanilla planifolia) , 2014, BMC Genomics.

[180]  Luis F Rodriguez,et al.  Agave for tequila and biofuels: an economic assessment and potential opportunities , 2011 .

[181]  R. Ming,et al.  Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production. , 2015, The New phytologist.

[182]  W. Hodgson Food Plants of the Sonoran Desert , 2001 .

[183]  D. Grindlay,et al.  The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. , 1986, Journal of ethnopharmacology.

[184]  J. Coello-Coello,et al.  Agave studies in Yucatan, Mexico. II. Nutritional value of the inflorescence peduncle and incipient domestication , 1993, Economic Botany.