On identification of stable systems and optimal approximation

Abstract Approximative modelling of stable continuous-time, possibly infinite dimensional, systems is studied based on an optimal approximation approach. Both approximation of analytical system representations (system approximation) as well as approximation of input-output data based system estimates (system identification) are considered. While special emphasis is given to approximative modelling in the H ∞ and Hankel norms, the L 1 and L 2 norm cases are also discussed. The model sets considered here are finite dimensional systems and time shifted systems (simple delay systems). The theory of approximation numbers is shown to provide a convenient tool to study problems of identification of stable continuous-time systems in a deterministic framework with close connections to complexity considerations. Laguerre-Fourier series methods and Hankel operator techniques can be utilized to develop fully practical identification methods for continuous-time, possibly infinite dimensional, systems.

[1]  R. Curtain,et al.  Realisation and approximation of linear infinite-dimensional systems with error bounds , 1988 .

[2]  G. Zames On the metric complexity of casual linear systems: ε -Entropy and ε -Dimension for continuous time , 1979 .

[3]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[4]  M. Kreĭn,et al.  Infinite hankel matrices and generalized carathéodory — fejer and riesz problems , 1968 .

[5]  P. Khargonekar,et al.  Approximation of infinite-dimensional systems , 1989 .

[6]  Brian D. O. Anderson,et al.  Approximation and stabilization of distributed systems by lumped systems , 1989 .

[7]  R.E. Goodson,et al.  Parameter identification in distributed systems: A synthesizing overview , 1976, Proceedings of the IEEE.

[8]  Carlos S. Kubrusly,et al.  Distributed parameter system indentification A survey , 1977 .

[9]  Peter E. Caines,et al.  On the L ∞ consistency of L 2 estimators , 1989 .

[10]  Nicholas Young,et al.  The singular-value decomposition of an infinite Hankel matrix , 1983 .

[11]  P. Mäkilä,et al.  Approximation of delay systems—a case study , 1991 .

[12]  H. Kwakernaak Minimax frequency domain performance and robustness optimization of linear feedback systems , 1985 .

[13]  Jonathan R. Partington,et al.  Rational approximation of a class of infinite-dimensional systems I: Singular values of hankel operators , 1988, Math. Control. Signals Syst..

[14]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[15]  Lennart Ljung,et al.  On the estimation of transfer functions , 1985, Autom..

[16]  Jonathan R. Partington,et al.  Bounds on the achievable accuracy in model reduction , 1987 .

[17]  B. Wahlberg Model reductions of high-order estimated models : the asymptotic ML approach , 1989 .

[18]  H. Rake,et al.  Step response and frequency response methods , 1980, Autom..

[19]  L. Ljung,et al.  Asymptotic properties of black-box identification of transfer functions , 1985 .

[20]  A. Helmicki,et al.  Identification in H∞: a robustly convergent, nonlinear algorithm , 1990, 1990 American Control Conference.

[21]  L. Trefethen Rational Chebyshev approximation on the unit disk , 1980 .

[22]  Richard Askey,et al.  Mean convergence of expansions in Laguerre and Hermite series , 1965 .

[23]  Pertti M. Mäkilä,et al.  Laguerre series approximation of infinite dimensional systems , 1990, Autom..

[24]  Keith R. Godfrey,et al.  Correlation methods , 1980, Autom..

[25]  L. Ljung,et al.  Black-box Identification of Transfer Functions: Asymptotic Results for Increasing Model Order and Data Records , 1984 .

[26]  S. Mitter,et al.  H ∞ 0E Sensitivity Minimization for Delay Systems , 1987 .

[27]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[28]  Jorma Rissanen Estimation of errors-in-variables models , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[29]  J. Lam,et al.  Balanced realisation and Hankel-norm approximation of systems involving delays , 1986, 1986 25th IEEE Conference on Decision and Control.

[30]  Pertti M. Mäkilä,et al.  Approximation of stable systems by laguerre filters , 1990, Autom..

[31]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[32]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[33]  Allen Tannenbaum,et al.  Some Explicit Formulae for the Singular Values of Certain Hankel Operators with Factorizable Symbol , 1988 .

[34]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[35]  Allen Tannenbaum,et al.  On the H ∞ -optimal sensitivity problem for systems with delays , 1987 .