Quantum-state engineering using nonlinear optical Sagnac loops

The Kerr nonlinearity of an optical-fibre Sagnac loop can be utilized to engineer a variety of two-photon quantum states. These include correlated, identical photon pairs as well as degenerate, maximally entangled states— both of which are used in quantum information processing. In fact, their underlying principle—the reverse Hong-Ou-Mandel effect—can also be applied to free-space, down-conversion-based analogues of either identical or entangled photon-pair sources. Due to their simple structure, such versatile devices are expected to find widespread applications in quantum-state engineering.

[1]  Brian Culshaw,et al.  The optical fibre Sagnac interferometer: an overview of its principles and applications , 2005 .

[2]  R. Shorthill,et al.  Fiber ring interferometer. , 1976, Applied optics.

[3]  L J Wang,et al.  Generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[4]  J. Chen Two-photon-state generation via four-wave mixing in optical fibers (9 pages) , 2005 .

[5]  Onur Kuzucu,et al.  Pulsed Sagnac source of narrow-band polarization-entangled photons , 2007, 0710.5390.

[6]  Heonoh Kim,et al.  Quantum-eraser experiment with frequency-entangled photon pairs , 2003 .

[7]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[8]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[9]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[10]  J. Franson,et al.  Investigation of a single-photon source based on quantum interference , 2007, quant-ph/0701195.

[11]  M Saruwatari,et al.  Optical parametric loop mirror. , 1995, Optics letters.

[12]  Quantum information processing with optical fibers , 2005, 2005 Quantum Electronics and Laser Science Conference.

[13]  Jun Chen,et al.  Generation of high purity telecom-band entangled photon-pairs in dispersion-shifted fiber , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[14]  Jun Chen,et al.  Demonstration of a quantum controlled-NOT gate in the telecommunications band. , 2008, Physical review letters.

[15]  Jun Chen,et al.  Fiber-based telecom-band degenerate-frequency source of entangled photon pairs. , 2006, Optics letters.

[16]  Alan L. Migdall,et al.  Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs , 2007 .

[17]  D. B. Mortimore,et al.  Fiber loop reflectors , 1988 .

[18]  Jun Chen,et al.  Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference , 2007 .

[19]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[20]  O. Alibart,et al.  Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment , 2006 .

[21]  F. Konig,et al.  Photon-Number Squeezed Solitons from an Asymmetric Fiber-Optic Sagnac Interferometer , 1998 .

[22]  A. Migdall,et al.  Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses. , 2005, Optics express.

[23]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[24]  Nick Doran,et al.  Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer , 1990 .

[25]  Teich,et al.  Two-photon interference in a Mach-Zehnder interferometer. , 1990, Physical review letters.

[26]  Jun Chen,et al.  Schemes for fibre-based entanglement generation in the telecom band , 2007 .

[27]  Kyo Inoue,et al.  1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. , 2005, Optics express.

[28]  L J Wang,et al.  Efficient generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[29]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[30]  J. P. Sokoloff,et al.  A terahertz optical asymmetric demultiplexer (TOAD) , 1993, IEEE Photonics Technology Letters.

[31]  M. Eiselt,et al.  Optical loop mirror with semiconductor laser amplifier , 1992 .

[32]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[33]  K. Bergman,et al.  Amplitude-squeezed solitons from an asymmetric fiber interferometer. , 1998, Optics letters.

[34]  Edo Waks,et al.  Ultra-bright source of polarization-entangled photons , 1999 .

[35]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[36]  Akihisa Tomita,et al.  Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer , 2004 .

[37]  M. Fermann,et al.  Nonlinear amplifying loop mirror. , 1990, Optics letters.

[38]  Yikai Su,et al.  All-optical picosecond-pulse packet buffer based on four-wave mixing loading and intracavity soliton control , 2002 .

[39]  P. Kumar,et al.  All-optical loadable and erasable storage buffer based on parametric nonlinearity in fiber , 2005, Journal of Lightwave Technology.

[40]  E.A. Swanson,et al.  A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tunability for WDM optical networks , 1994, IEEE Photonics Technology Letters.

[41]  N. Gisin,et al.  Photon-bunching measurement after 2x25km of standard optical fibers , 2004, quant-ph/0408092.

[42]  J R Simpson,et al.  Soliton switching in a fiber nonlinear loop mirror. , 1989, Optics letters.

[43]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .