PATTERN BENEATH THE CHAOS: THE EFFECT OF RECRUITMENT ON GENETIC PATCHINESS IN AN INTERTIDAL LIMPET

Gene exchange among widely separated areas characterizes many marine organisms with planktonic dispersal. From an evolutionary perspective, the essential feature of such dispersal is that recruits to local populations come from somewhere else. Thus, localized adaptation is not accumulated over time, and changes in the genetic composition of adults reflect single-generation effects of selection and recruitment. The most obvious effect of planktonic dispersal is the reduction of geographic variation in genetic composition (e.g., Scheltema, 1971, 1978), and low variances of allelic frequencies have been found to be associated with planktonic dispersal (e.g., Berger, 1973; Levinton and Suchanek, 1978; Winans,

[1]  R. Black,et al.  The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. , 1984 .

[2]  Joan D. S. Darling,et al.  TEMPORAL STABILITY OF LACTATE DEHYDROGENASE‐A CLINES OF THE HIGH COCKSCOMB, ANOPLARCHUS PURPURESCENS , 1983, Evolution; international journal of organic evolution.

[3]  R. Cameron,et al.  Larval abundance and recruitment of the sand dollar Dendraster excentricus in Monterey Bay, California, USA , 1982 .

[4]  R. Black,et al.  Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. , 1982 .

[5]  K. Sebens Recruitment and habitat selection in the intertidal sea anemones, Anthopleura elegantissima (Brandt) and A. xanthogrammica (Brandt) , 1982 .

[6]  P. N. Chalmer Settlement patterns of species in a marine fouling community and some mechanisms of succession , 1982 .

[7]  R. Black,et al.  Genetic differentiation independent of intertidal gradients in the pulmonate limpet Siphonaria kurracheensis , 1981 .

[8]  R. K. Koehn,et al.  Maintenance of an aminopeptidase allele frequency cline by natural selection. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Cresswell,et al.  Observations of a south-flowing current in the southeastern Indian Ocean , 1980 .

[10]  G. Winans GEOGRAPHIC VARIATION IN THE MILKFISH CHANOS CHANOS. I. BIOCHEMICAL EVIDENCE , 1980, Evolution; international journal of organic evolution.

[11]  P. J. Smith,et al.  Esterase gene frequencies and temperature relationships in the New Zealand snapper Chrysophrys auratus , 1979 .

[12]  J. Levinton,et al.  Geographic variation, niche breadth and genetic differentiation at different geographic scales in the mussels Mytilus californianus and M. edulis , 1978 .

[13]  R. K. Koehn,et al.  GENETIC DIFFERENTIATION WITHOUT ISOLATION IN THE AMERICAN EEL, ANGUILLA ROSTRATA. II. TEMPORAL STABILITY OF GEOGRAPHIC PATTERNS , 1978, Evolution; international journal of organic evolution.

[14]  H. Lassen,et al.  Clinal variation and heterozygote deficit at the lap-locus in Mytilus edulis , 1978 .

[15]  Michael S. Johnson Association of allozymes and temperature in the crested blenny Anoplarchus purpurescens , 1977 .

[16]  R. K. Koehn,et al.  TEMPORAL VARIATION IN THE RELATIONSHIP BETWEEN SIZE, NUMBERS, AND AN ALLELE‐FREQUENCY IN A POPULATION OF MYTILUS EDULIS , 1977, Evolution; international journal of organic evolution.

[17]  R. K. Koehn,et al.  POPULATION GENETICS OF MARINE PELECYPODS. IV. SELECTION, MIGRATION AND GENETIC DIFFERENTIATION IN THE BLUE MUSSEL MYTILUS EDULIS , 1976, Evolution; international journal of organic evolution.

[18]  George C. Williams,et al.  Sex and evolution. , 1975, Monographs in population biology.

[19]  M. Tracey,et al.  Excess allozyme homozygosity and breeding population structure in the Mussel Mytilus californianus , 1975 .

[20]  Michael S. Johnson COMPARATIVE GEOGRAPHIC VARIATION IN MENIDIA , 1974, Evolution; international journal of organic evolution.

[21]  R. Doyle Choosing between darkness and light: The ecological genetics of photic behaviour in the planktonic larva of Spirorbis borealis , 1974 .

[22]  E. Berger GENE-ENZYME VARIATION IN THREE SYMPATRIC SPECIES OF LITTORINA , 1973 .

[23]  R. K. Koehn,et al.  GENETIC DIFFERENTIATION WITHOUT ISOLATION IN THE AMERICAN EEL, ANGUILLA ROSTRATA , 1973, Evolution; international journal of organic evolution.

[24]  T. Schopf,et al.  GENETIC VARIATION IN THE MARINE ECTOPROCT SCHIZOPORELLA ERRATA , 1971 .

[25]  M. Johnson Aadaptive lactate dehydrogenase variation in the crested blenny, Anoplarchus1 , 1971, Heredity.

[26]  R. S. Scheltema LARVAL DISPERSAL AS A MEANS OF GENETIC EXCHANGE BETWEEN GEOGRAPHICALLY SEPARATED POPULATIONS OF SHALLOW-WATER BENTHIC MARINE GASTROPODS , 1971 .

[27]  J. T. Giesel ON THE MAINTENANCE OF A SHELL PATTERN AND BEHAVIOR POLYMORPHISM IN ACMAEA DIGITALIS, A LIMPET , 1970, Evolution; international journal of organic evolution.

[28]  A. O'gower,et al.  A latitudinal cline of haemoglobins in a bivalve mollusc , 1968, Heredity.

[29]  E. Deevey Life Tables for Natural Populations of Animals , 1947, The Quarterly Review of Biology.

[30]  B. W. Jenkins A new siphonariid (Mollusca: Pulmonata) from southwestern Australia , 1984 .

[31]  J. Maxwell,et al.  Dispersal of tropical marine fauna to the Great Australian Bight by the Leeuwin Current , 1981 .

[32]  P. Sale,et al.  Spatial and temporal patterns of recuruitment of juvenile coral reef fishes to coral habitats within “One Tree Lagoon”, great barrier reef , 1981 .

[33]  A. Underwood The ecology of intertidal gastropods , 1979 .

[34]  Sewall Wright,et al.  Variability within and among natural populations , 1978 .

[35]  R. K. Koehn,et al.  Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus. , 1975, Genetics.

[36]  D. Powers,et al.  PREDICTING GENE FREQUENCIES IN NATURAL POPULATIONS: A TESTABLE HYPOTHESIS , 1975 .