Condensin II initiates sister chromatid resolution during S phase

Condensin II initiates structural reorganization of duplicated chromosomes during S phase to prepare for their proper condensation and segregation in mitosis.

[1]  T. Hirano Condensins: universal organizers of chromosomes with diverse functions. , 2012, Genes & development.

[2]  M. Blasco,et al.  Cohesin‐SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres , 2012, The EMBO journal.

[3]  T. Xie,et al.  Identification of Genes That Promote or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH–Based Screen , 2012, PLoS genetics.

[4]  T. Hirano,et al.  MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II , 2011, The Journal of cell biology.

[5]  T. Hirano,et al.  The relative ratio of condensin I to II determines chromosome shapes. , 2011, Genes & development.

[6]  M. Oyama,et al.  The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. , 2011, Genes & development.

[7]  N. Nomura,et al.  Characterization of a de novo balanced t(4;20)(q33;q12) translocation in a patient with mental retardation , 2010, American journal of medical genetics. Part A.

[8]  A. Wood,et al.  Condensin and cohesin complexity: the expanding repertoire of functions , 2010, Nature Reviews Genetics.

[9]  Susan Smith,et al.  Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells , 2009, The Journal of cell biology.

[10]  D. Rudner,et al.  Recruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation , 2009, Cell.

[11]  J. Errington,et al.  Recruitment of Condensin to Replication Origin Regions by ParB/SpoOJ Promotes Chromosome Segregation in B. subtilis , 2009, Cell.

[12]  W. Earnshaw,et al.  Condensin: Architect of mitotic chromosomes , 2009, Chromosome Research.

[13]  G. Bosco,et al.  Chromosome Alignment and Transvection Are Antagonized by Condensin II , 2008, Science.

[14]  M. Debatisse,et al.  Replication fork movement sets chromatin loop size and origin choice in mammalian cells , 2008, Nature.

[15]  J. Marko,et al.  Micromechanical studies of mitotic chromosomes , 2004, Journal of Muscle Research & Cell Motility.

[16]  Xin Quan Ge,et al.  Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. , 2007, Genes & development.

[17]  M. Crosby,et al.  Cell Cycle: Principles of Control , 2007, The Yale Journal of Biology and Medicine.

[18]  E. Gotoh Visualizing the dynamics of chromosome structure formation coupled with DNA replication , 2007, Chromosoma.

[19]  Karl Mechtler,et al.  Sororin Is Required for Stable Binding of Cohesin to Chromatin and for Sister Chromatid Cohesion in Interphase , 2007, Current Biology.

[20]  T. Hirano,et al.  Human Wapl Is a Cohesin-Binding Protein that Promotes Sister-Chromatid Resolution in Mitotic Prophase , 2006, Current Biology.

[21]  A. Belmont Mitotic chromosome structure and condensation. , 2006, Current opinion in cell biology.

[22]  M. Durante,et al.  Chromosome condensation outside of mitosis: Mechanisms and new tools , 2006, Journal of cellular physiology.

[23]  C. Paraskevopoulou,et al.  The use of premature chromosome condensation to study in interphase cells the influence of environmental factors on human genetic material , 2006, TheScientificWorldJournal.

[24]  J. Ellenberg,et al.  Condensin I Stabilizes Chromosomes Mechanically through a Dynamic Interaction in Live Cells , 2006, Current Biology.

[25]  T. Hirano,et al.  Misregulated Chromosome Condensation in MCPH1 Primary Microcephaly is Mediated by Condensin II , 2006, Cell cycle.

[26]  B. Dutrillaux,et al.  Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Ellenberg,et al.  Distinct functions of condensin I and II in mitotic chromosome assembly , 2004, Journal of Cell Science.

[28]  G. Karpen,et al.  Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin , 2004, Nature Structural &Molecular Biology.

[29]  G. Almouzni,et al.  Mouse centric and pericentric satellite repeats form distinct functional heterochromatin , 2004, The Journal of cell biology.

[30]  Yuda Fang,et al.  Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. , 2004, Molecular biology of the cell.

[31]  J. Rino,et al.  Human topoisomerase IIalpha: targeting to subchromosomal sites of activity during interphase and mitosis. , 2004, Molecular biology of the cell.

[32]  A. Belmont,et al.  Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure , 2004 .

[33]  F. M. Yeong,et al.  Identification of a Subunit of a Novel Kleisin-β/SMC Complex as a Potential Substrate of Protein Phosphatase 2A , 2003, Current Biology.

[34]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[35]  J. Swedlow,et al.  The making of the mitotic chromosome: modern insights into classical questions. , 2003, Molecular cell.

[36]  O. Cuvier,et al.  Chromosome Condensation by a Human Condensin Complex inXenopus Egg Extracts* , 2001, The Journal of Biological Chemistry.

[37]  D A Agard,et al.  IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. , 1996, Journal of structural biology.

[38]  M. Yoshida,et al.  Chromosomal assignment of retinoblastoma 1 gene (RB1) to mouse 14D3 and rat 15q12 by fluorescence in situ hybridization. , 1993, Idengaku zasshi.

[39]  D. J. Driscoll,et al.  Allele-specific replication timing of imprinted gene regions , 1993, Nature.

[40]  D. Ward,et al.  Delineation of DNA replication time zones by fluorescence in situ hybridization. , 1992, The EMBO journal.

[41]  室 慶直 The heterogeneity of anticentromere antibodies in immunoblotting analysis. , 1990 .

[42]  K. Sugimoto,et al.  The heterogeneity of anticentromere antibodies in immunoblotting analysis. , 1990, The Journal of rheumatology.

[43]  W. Earnshaw,et al.  Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[44]  P. N. Rao,et al.  Mammalian Cell Fusion : Induction of Premature Chromosome Condensation in Interphase Nuclei , 1970, Nature.

[45]  D. Mazia SYNTHETIC ACTIVITIES LEADING TO MITOSIS. , 1963, Journal of cellular and comparative physiology.

[46]  W. Flemming Zellsubstanz, Kern und Zelltheilung , 1882 .