Molecular aspects of biochemical markers.

This review summarizes present knowledge of the molecular basis for certain serum protein and red cell enzyme markers that have played important roles in forensic individualization and paternity tests. Most genes have nucleotide variations at two or more mutations sites, and their alleles exist as haplotypes. Allelic diversity is generated by various mechanisms including point mutation, intragenic recombination, gene conversion, and alternative splicing. Deficient and null alleles arise from point mutation and deletion. The value of genomic information on allelic diversity is also discussed.

[1]  G. Sensabaugh,et al.  Use of the Polymerase Chain Reaction for Typing Gc Variants , 1990 .

[2]  H. Harris,et al.  Red Cell Acid Phosphatase Variants: A New Human Polymorphism , 1963, Nature.

[3]  S. Tsuchida,et al.  Molecular analysis of esterase D polymorphism , 1994, Human Genetics.

[4]  L. Henke,et al.  Molecular Basis of ESD*5 and ESD*7 and Haplotype Analysis with New Polymorphisms in Introns , 2004, Human biology.

[5]  Walter Bär,et al.  Advances in Forensic Haemogenetics , 1988, Advances in Forensic Haemogenetics.

[6]  S. Cichon,et al.  Polymorphism of human complement component C6: an amino acid substitution (Glu/Ala) within the second thrombospondin repeat differentiates between the two common allotypes C6 A and C6 B. , 1993, Biochemical and biophysical research communications.

[7]  M. Abbal,et al.  Molecular characterization of human complement factor B subtypes , 2004, Immunogenetics.

[8]  K. Matsui,et al.  Molecular basis for subtypic differences of the “a” subunit of coagulation factor XIII with description of the genesis of the subtypes , 1994, Human Genetics.

[9]  I. Yuasa,et al.  The Human Complement Component C1R Gene: The Exon‐intron Structure and the Molecular Basis of Allelic Diversity , 2003, Annals of human genetics.

[10]  Y. Itoh Progress in Forensic Genetics , 2004 .

[11]  L. Henke,et al.  Characterization of genomic rearrangements of the α1-acid glycoprotein/orosomucoid gene in Ghanaians , 2001, Journal of Human Genetics.

[12]  G. V. van Landeghem,et al.  DNA polymorphisms and haplotypes in the human transferrin gene , 1998, Human Genetics.

[13]  S. Kira,et al.  Alpha 1-antitrypsin-deficient variant Siiyama (Ser53[TCC] to Phe53[TTC]) is prevalent in Japan. Status of alpha 1-antitrypsin deficiency in Japan. , 1995, American journal of respiratory and critical care medicine.

[14]  I. Yuasa,et al.  Molecular characterization of four alpha-1-antitrypsin variant alleles found in a Japanese population: a mutation hot spot at the codon for amino acid 362. , 2001, Legal medicine.

[15]  J. Neel,et al.  Intragenic recombination at the human phosphoglucomutase 1 locus: predictions fulfilled. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Bensi,et al.  Molecular evidence of triplication in the haptoglobin Johnson variant gene , 2004, Human Genetics.

[17]  L. Henke,et al.  Molecular analysis of the human orosomucoid gene ORM1*Q0köln responsible for incompatibility in a German paternity case , 2000, International Journal of Legal Medicine.

[18]  E. Nanba,et al.  Human orosomucoid polymorphism: molecular basis of the three common ORM1 alleles, ORM1*F1, ORM1*F2, and ORM1*S , 1997, Human Genetics.

[19]  O. Smithies,et al.  Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. , 1955, The Biochemical journal.

[20]  I. Yuasa,et al.  ITIH1* Q0iwate, a null allele of inter-alpha-trypsin inhibitor H1 caused by deletion/frameshift mutation , 1997, Japanese Journal of Human Genetics.

[21]  G. Sensabaugh,et al.  Exon Structure at the Human ACP1 Locus Supports Alternative Splicing Model for f-Isozyme and s-Isozyme Generation , 1993 .

[22]  L. Henke,et al.  Novel polymorphisms and haplotypes in the human coagulation factor XIII A-subunit gene , 1996, Human Genetics.

[23]  T. Horiuchi,et al.  Molecular bases for human complement C7 polymorphisms, C7*3 and C7*4. , 2002, Biochemical and biophysical research communications.

[24]  G. Weinstock,et al.  Human glutamate pyruvate transaminase (GPT): localization to 8q24.3, cDNA and genomic sequences, and polymorphic sites. , 1997, Genomics.

[25]  D A Hopkinson,et al.  The classical human phosphoglucomutase (PGM1) isozyme polymorphism is generated by intragenic recombination. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  S. Yip,et al.  Mapping recombination hotspots in human phosphoglucomutase (PGM1). , 1999, Human molecular genetics.

[27]  E. Nanba,et al.  The rearrangement of the human alpha(1)-acid glycoprotein/orosomucoid gene: evidence for tandemly triplicated genes consisting of two AGP1 and one AGP2. , 2000, Biochemical and biophysical research communications.

[28]  N. Takahashi,et al.  Identification of Base Substitutions in Ten Types of Rare Variants of Phosphoglucomutase-1 (PGM1) Encountered in Japanese , 2001, Human biology.

[29]  A. Braun,et al.  Characterization of mutants of the vitamin D-binding protein/group-specific component: molecular evolution of GC*1A2 and GC*1A3, common in some Asian populations , 1995, Human Genetics.

[30]  L. Henke,et al.  Alpha2‐HS glycoprotein (fetuin) deficiency in a heterozygote of 4452A>T , 1999 .

[31]  Takaki Ishikawa,et al.  A new 39-plex analysis method for SNPs including 15 blood group loci. , 2004, Forensic science international.

[32]  R. Crystal,et al.  Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. , 1990, The Journal of clinical investigation.

[33]  N. Maeda,et al.  Duplication within the haptoglobin Hp2 gene , 1984, Nature.

[34]  M. Imagawa,et al.  Human transferrin (Tf): a single mutation at codon 570 determines Tf C1 or Tf C2 variant , 1997, Human Genetics.

[35]  N. Saitou,et al.  Haplotype analysis of the human α2‐HS glycoprotein (fetuin) gene , 2001, Annals of human genetics.

[36]  P. Lachmann,et al.  Molecular basis of the complement C7 M/N polymorphism. A neutral amino acid substitution outside the epitope of the allospecific monoclonal antibody WU 4-15. , 1995, Journal of immunology.