Optimal Control Under Fuzzy Conditions for Dynamical Systems Associated with the Second Order Linear Differential Equations

This paper is devoted to an optimal trajectory planning problem with uncertainty in location conditions considered as a problem of constrained optimal control for dynamical systems. Fuzzy numbers are used to incorporate uncertainty of constraints into the classical setting of the problem under consideration. The proposed approach applied to dynamical systems associated with the second order linear differential equations allows to find an optimal control law at each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-level using spline-based methods developed in the framework of the theory of splines in convex sets. The solution technique is illustrated by numerical examples.