The Edit Distance for Reeb Graphs of Surfaces

Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work, we define a combinatorial distance for Reeb graphs of orientable surfaces in terms of the cost necessary to transform one graph into another by edit operations. The main contributions of this paper are the stability property and the optimality of this edit distance. More precisely, the stability result states that changes in the Reeb graphs, measured by the edit distance, are as small as changes in the functions, measured by the maximum norm. The optimality result states that the edit distance discriminates Reeb graphs better than any other distance for Reeb graphs of surfaces satisfying the stability property.

[1]  W. H. Cockcroft,et al.  J. Milnor, Lectures on the h-Cobordism Theorem , Notes by L. Siebenmann and J. Sondow (Princeton Mathematical Notes, Oxford University Press), 18s. , 1967, Proceedings of the Edinburgh Mathematical Society.

[2]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.

[3]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[4]  Vincent Barra,et al.  3D shape retrieval using Kernels on Extended Reeb Graphs , 2013, Pattern Recognit..

[5]  Claudia Landi,et al.  The natural pseudo-distance as a quotient pseudo-metric, and applications , 2015 .

[6]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[7]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[8]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[9]  Ulrich Bauer,et al.  Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs , 2014, SoCG.

[10]  W. A. Labach Manifolds With Transverse Fields in Euclidean Space , 1965 .

[11]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[12]  Tosiyasu L. Kunii,et al.  Constructing a Reeb graph automatically from cross sections , 1991, IEEE Computer Graphics and Applications.

[13]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[14]  J. Milnor Lectures on the h-cobordism theorem , 1965 .

[15]  F. Sergeraert Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications , 1972 .

[16]  Jean Martinet Singularities of smooth functions and maps , 1982 .

[17]  J. Palis,et al.  Geometric theory of dynamical systems : an introduction , 1984 .

[18]  Pietro Donatini,et al.  Natural pseudodistances between closed manifolds , 2004 .

[19]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[20]  P.,et al.  REEB GRAPHS OF CURVES ARE STABLE UNDER FUNCTION PERTURBATIONS , 2011 .

[21]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[22]  E. Kudryavtseva Uniform Morse lemma and isotopy criterion for Morse functions on surfaces , 2009 .

[23]  V. Sharko ABOUT KRONROD-REEB GRAPH OF A FUNCTION ON A MANIFOLD , 2006 .

[24]  Silvia Biasotti,et al.  Sub-part correspondence by structural descriptors of 3D shapes , 2006, Comput. Aided Des..

[25]  J. Cerf La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie , 1970 .

[26]  Ulrich Bauer,et al.  Measuring Distance between Reeb Graphs , 2013, SoCG.

[27]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Trans. Vis. Comput. Graph..

[28]  V. Sharko Smooth and Topological Equivalence of Functions on Surfaces , 2003 .

[29]  O. Saeki,et al.  A SMOOTH FUNCTION ON A MANIFOLD WITH GIVEN REEB GRAPH , 2011 .

[30]  Alexey V. Bolsinov,et al.  Integrable Hamiltonian Systems: Geometry, Topology, Classification , 2004 .