What Can We Learn from Analogue Experiments?

In 1981 Unruh proposed that fluid mechanical experiments could be used to probe key aspects of the quantum phenomenology of black holes. In particular, he claimed that an analogue to Hawking radiation could be created within a fluid mechanical `dumb hole', with the event horizon replaced by a sonic horizon. Since then an entire sub-field of `analogue gravity' has been created. In 2016 Steinhauer reported the experimental observation of quantum Hawking radiation and its entanglement in a Bose-Einstein condensate analogue black hole. What can we learn from such analogue experiments? In particular, in what sense can they provide evidence of novel phenomena such as black hole Hawking radiation?

[1]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[2]  S. Hawking Particle creation by black holes , 1975 .

[3]  W. Unruh Experimental black hole evaporation , 1981 .

[4]  L. Taylor,et al.  The Neglect of Experiment , 1986 .

[5]  W. Salmon Rationaltiy and objectivity in science, or, Tom Kuhn meets Tom Bayes , 1990 .

[6]  Jacobson,et al.  Black-hole evaporation and ultrashort distances. , 1991, Physical review. D, Particles and fields.

[7]  Jacobson Black hole radiation in the presence of a short distance cutoff. , 1993, Physical review. D, Particles and fields.

[8]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[9]  Unruh Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. , 1994, Physical review. D, Particles and fields.

[10]  Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach , 1997, hep-th/9710075.

[11]  F. Scardigli Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment , 1999, hep-th/9904025.

[12]  Cirac,et al.  Sonic analog of gravitational black holes in bose-einstein condensates , 2000, Physical review letters.

[13]  Takahiro Tanaka,et al.  Generalization of the model of Hawking radiation with modified high frequency dispersion relation , 1999, gr-qc/9904076.

[14]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[15]  정승원,et al.  Confirmation , 1979, Journal of General Internal Medicine.

[16]  R. Schutzhold,et al.  Universality of the Hawking effect , 2004, gr-qc/0408009.

[17]  S. Roush Tracking Truth: Knowledge, Evidence, and Science , 2005 .

[18]  A. Einstein Quantentheorie des einatomigen idealen Gases , 2006 .

[19]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[20]  Wendy S. Parker,et al.  Does matter really matter? Computer simulations, experiments, and materiality , 2009, Synthese.

[21]  I. Carusotto,et al.  Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes , 2007, 0711.4520.

[22]  Eric Winsberg,et al.  A tale of two methods , 2009, Synthese.

[23]  W. Unruh Dumb holes: analogues for black holes , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  G. Dvali,et al.  Black hole bound on the number of species and quantum gravity at CERN LHC , 2007, 0710.4344.

[25]  L. Garay,et al.  Sensitivity of Hawking radiation to superluminal dispersion relations , 2008, 0807.4147.

[26]  I. Carusotto,et al.  Bogoliubov Theory of acoustic Hawking radiation in Bose-Einstein Condensates , 2009, 0907.4305.

[27]  Nancy Cartwright,et al.  Evidence-based policy: Where is our theory of evidence? , 2010 .

[28]  J. Steinhauer,et al.  Realization of a sonic black hole analog in a Bose-Einstein condensate. , 2009, Physical review letters.

[29]  R. Schutzhold,et al.  Quantum correlations across the black hole horizon , 2010, 1002.1844.

[30]  V. G. Sala,et al.  Hawking radiation from ultrashort laser pulse filaments. , 2010, Physical review letters.

[31]  Eric Winsberg,et al.  Science in the Age of Computer Simulation , 2010 .

[32]  R. Parentani From vacuum fluctuations across an event horizon to long distance correlations , 2010, 1003.3625.

[33]  Paul Bartha,et al.  By parallel reasoning : the construction and evaluation of analogical arguments , 2010 .

[34]  M. Visser,et al.  Analogue Gravity , 2005, Living reviews in relativity.

[35]  J. Norton,et al.  Why Monte Carlo Simulations Are Inferences and Not Experiments , 2012 .

[36]  Hawking radiation from 'phase horizons' in laser filaments? , 2012, 1202.6492.

[37]  R. Parentani,et al.  Black hole radiation with short distance dispersion, an analytical S-matrix approach , 2011, 1108.1821.

[38]  M. Visser,et al.  Quantum vacuum radiation in optical glass , 2011, 1111.0214.

[39]  R. Dawid,et al.  String Theory and the Scientific Method: An altered perspective on scientific realism , 2013 .

[40]  J. Steinhauer Observation of self-amplifying Hawking radiation in an analogue black-hole laser , 2014, Nature Physics.

[41]  I. Carusotto,et al.  Supplemental Information : An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons , 2014 .

[42]  J. Steinhauer Measuring the entanglement of analogue Hawking radiation by the density-density correlation function , 2015, 1504.06583.

[43]  S. Hartmann,et al.  The No Alternatives Argument , 2015, The British Journal for the Philosophy of Science.

[44]  S. Giddings Hawking radiation, the Stefan–Boltzmann law, and unitarization , 2015, 1511.08221.

[45]  U. Leonhardt,et al.  Hawking spectrum for a fiber-optical analog of the event horizon , 2016, 1601.06816.

[46]  Doreen Schweizer,et al.  Scientific Models In Philosophy Of Science , 2016 .

[47]  J. Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole , 2015, Nature Physics.

[48]  Eric Winsberg,et al.  Confirmation via Analogue Simulation: What Dumb Holes Could Tell Us about Gravity , 2015, The British Journal for the Philosophy of Science.

[49]  A. Franklin,et al.  EXPERIMENT IN PHYSICS , 1998, The Aim and Structure of Physical Theory.