A histidine in the beta-CASP domain of Artemis is critical for its full in vitro and in vivo functions.

[1]  H. Putzer,et al.  Structural insights into the dual activity of RNase J , 2008, Nature Structural &Molecular Biology.

[2]  J. Delettré,et al.  A generalized analysis of hydrophobic and loop clusters within globular protein sequences , 2007, BMC Structural Biology.

[3]  L. Tong,et al.  Polyadenylation factor CPSF-73 is the pre-mRNA 3'-end-processing endonuclease , 2006, Nature.

[4]  R. Masui,et al.  Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily. , 2006, Journal of biochemistry.

[5]  E. Gilson,et al.  The Apollo 5′ Exonuclease Functions Together with TRF2 to Protect Telomeres from DNA Repair , 2006, Current Biology.

[6]  T. Lange,et al.  Apollo, an Artemis-Related Nuclease, Interacts with TRF2 and Protects Human Telomeres in S Phase , 2006, Current Biology.

[7]  R. Moses,et al.  The yeast Snm1 protein is a DNA 5'-exonuclease. , 2005, DNA repair.

[8]  Martin Kühne,et al.  A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. , 2004, Molecular cell.

[9]  Yunmei Ma,et al.  Functional and biochemical dissection of the structure‐specific nuclease ARTEMIS , 2004, The EMBO journal.

[10]  I. Villey,et al.  The Metallo-β-Lactamase/β-CASP Domain of Artemis Constitutes the Catalytic Core for V(D)J Recombination , 2004, The Journal of experimental medicine.

[11]  Burkhard Rost,et al.  The PredictProtein server , 2003, Nucleic Acids Res..

[12]  Liam J. McGuffin,et al.  Improvement of the GenTHREADER Method for Genomic Fold Recognition , 2003, Bioinform..

[13]  W. Hittelman,et al.  hSnm1 Colocalizes and Physically Associates with 53BP1 before and after DNA Damage , 2002, Molecular and Cellular Biology.

[14]  J. Mornon,et al.  Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family , 2002 .

[15]  Yunmei Ma,et al.  Hairpin Opening and Overhang Processing by an Artemis/DNA-Dependent Protein Kinase Complex in Nonhomologous End Joining and V(D)J Recombination , 2002, Cell.

[16]  Hiromi Daiyasu,et al.  Expansion of the zinc metallo‐hydrolase family of the β‐lactamase fold , 2001 .

[17]  T L Blundell,et al.  FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. , 2001, Journal of molecular biology.

[18]  A. Fischer,et al.  Artemis, a Novel DNA Double-Strand Break Repair/V(D)J Recombination Protein, Is Mutated in Human Severe Combined Immune Deficiency , 2001, Cell.

[19]  M. Vasconcelos,et al.  Disruption of Mouse SNM1 Causes Increased Sensitivity to the DNA Interstrand Cross-Linking Agent Mitomycin C , 2000, Molecular and Cellular Biology.

[20]  M. Sternberg,et al.  Enhanced genome annotation using structural profiles in the program 3D-PSSM. , 2000, Journal of molecular biology.

[21]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[22]  G. Labesse,et al.  Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives , 1997, Cellular and Molecular Life Sciences CMLS.

[23]  J. Mornon,et al.  Hydrophobic cluster analysis: An efficient new way to compare and analyse amino acid sequences , 1987, FEBS letters.

[24]  Yunmei Ma,et al.  In vitro nonhomologous DNA end joining system. , 2006, Methods in enzymology.

[25]  J. Mornon,et al.  Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. , 2002, Nucleic acids research.

[26]  H Toh,et al.  Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. , 2001, FEBS letters.

[27]  L. Aravind,et al.  An evolutionary classification of the metallo-beta-lactamase fold proteins , 1998, Silico Biol..

[28]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.