Unsupervised Subpixelic Classification Using Coarse-Resolution Time Series and Structural Information

In this paper, a new method is presented for a subpixelic land cover classification using both high-resolution structural information and coarse-resolution (CR) temporal information. To that aim, the linear mixture model is used for pixel disaggregation. It enables us to describe a CR time series in terms of the mixture of classes that are represented within each pixel. Then, the Bayes' rule and the maximum a posteriori criterion lead to the definition of an energy function whose minimum corresponds to the researched optimal classification. A theoretical analysis of the labeling errors that may be obtained using this energy function is provided, raising the main parameters for labeling performance. The optimal classification is computed by combining linear regressions and simulated annealing, leading to an unsupervised algorithm. The method is validated with numerical results obtained on two different agricultural scenes (i.e., the Danubian plain and the Coet Dan watershed).

[1]  W. J. Carper,et al.  The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data , 1990 .

[2]  F. Laporterie-Dejean,et al.  Pre-segmentation of high resolution images thanks to the morphological pyramid , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[3]  J. Settle,et al.  Subpixel measurement of tropical forest cover using AVHRR data , 1991 .

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  Catherine Ottlé,et al.  Land cover change detection at coarse spatial scales based on iterative estimation and previous state information , 2005 .

[6]  H. Kerdiles,et al.  NOAA-AVHRR NDVI decomposition and subpixel classification using linear mixing in the Argentinean Pampa , 1995 .

[7]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[8]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[9]  Giles M. Foody,et al.  Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data , 1996 .

[10]  Hugh G. Lewis,et al.  Super-resolution land cover pattern prediction using a Hopfield neural network , 2002 .

[11]  Peter M. Atkinson Super-resolution target mapping from soft classified remotely sensed imagery , 2001 .

[12]  M. Goulard,et al.  Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data , 2003 .

[13]  C. Small Estimation of urban vegetation abundance by spectral mixture analysis , 2001 .

[14]  R. Nalepka,et al.  Estimating the proportions of objects within a single resolution element of a multispectral scanner. , 1971 .

[15]  Pierre Lanchantin,et al.  Statistical image segmentation using triplet Markov fields , 2003, SPIE Remote Sensing.

[16]  G. Foody Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution , 1998 .

[17]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[18]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Grégoire Mercier,et al.  Estimation and monitoring of bare soil/vegetation ratio with SPOT VEGETATION and HRVIR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  F. D. van der Meer,et al.  Iterative spectral unmixing (ISU) , 1999 .

[21]  Siamak Khorram,et al.  The effects of image misregistration on the accuracy of remotely sensed change detection , 1998, IEEE Trans. Geosci. Remote. Sens..

[22]  Peter M. Atkinson,et al.  Mapping sub-pixel vector boundaries from remotely sensed images , 1996 .

[23]  Xinhua Zhuang,et al.  Gaussian mixture density modeling, decomposition, and applications , 1996, IEEE Trans. Image Process..

[24]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[25]  Bruno Aiazzi,et al.  Multispectral fusion of multisensor image data by the generalized Laplacian pyramid , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[26]  A. Robin,et al.  An Unsupervised Approach for Subpixelic Land-Cover Change Detection , 2007, 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images.

[27]  David P. Roy,et al.  The impact of misregistration upon composited wide field of view satellite data and implications for change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[28]  Johannes R. Sveinsson,et al.  Data fusion and feature extraction using tree structured filter banks , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[29]  A. Fischer,et al.  Predicting Crop Reflectances Using Satellite Data Observing Mixed Pixels , 1997 .

[30]  J. Settle,et al.  Linear mixing and the estimation of ground cover proportions , 1993 .

[31]  L. P. C. Verbeke,et al.  Using genetic algorithms in sub-pixel mapping , 2003 .

[32]  Alexandre Boucher,et al.  Super-resolution land cover mapping with indicator geostatistics , 2006 .

[33]  Pramod K. Varshney,et al.  Super-resolution land cover mapping using a Markov random field based approach , 2005 .

[34]  S. Le Hegarat-Mascle,et al.  Applications of simulated annealing to SAR image clustering and classification problems , 1996 .

[35]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[36]  Martin Brown,et al.  Linear spectral mixture models and support vector machines for remote sensing , 2000, IEEE Trans. Geosci. Remote. Sens..

[37]  L. Wald,et al.  Fusion of high spatial and spectral resolution images : The ARSIS concept and its implementation , 2000 .

[38]  Bernard Ycart,et al.  Modéles et algorithmes markoviens , 2002 .