Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles

[1]  Hang Zhang,et al.  A ratiometric optical thermometer with multi-color emission and high sensitivity based on double perovskite LaMg0.402Nb0.598O3: Pr3+ thermochromic phosphors , 2020 .

[2]  E. Lukinova,et al.  The comparison of Pr3+:LaF3 and Pr3+:LiYF4 luminescent nano- and microthermometer performances , 2019, Journal of Nanoparticle Research.

[3]  V. Lavín,et al.  Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – Studies in visible and NIR range , 2019, Journal of Luminescence.

[4]  L. Carlos,et al.  Bandgap Engineering and Excitation Energy Alteration to Manage Luminescence Thermometer Performance. The Case of Sr2(Ge,Si)O4:Pr3+ , 2019, Advanced Optical Materials.

[5]  A. Kiiamov,et al.  Luminescence Nanothermometry Based on Pr3+ : LaF3 Single Core and Pr3+ : LaF3/LaF3 Core/Shell Nanoparticles , 2019, Advances in Materials Science and Engineering.

[6]  V. Salnikov,et al.  Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles , 2019, Journal of Nanoparticle Research.

[7]  W. Stręk,et al.  Impact of grain size, Pr3+ concentration and host composition on non-contact temperature sensing abilities of polyphosphate nano- and microcrystals , 2019, Journal of Rare Earths.

[8]  S. Kuznetsov,et al.  Synthesis and downconversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics , 2019, Nanosystems: Physics, Chemistry, Mathematics.

[9]  A. Kiiamov,et al.  Characterization of Pr-Doped LaF3 Nanoparticles Synthesized by Different Variations of Coprecipitation Method , 2019, Journal of Nanomaterials.

[10]  M. Kaczmarek,et al.  Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing. , 2019, Nanoscale.

[11]  M. Pudovkin,et al.  Fluoride Nanoparticles for Biomedical Applications , 2019, Nanoparticles in Medicine.

[12]  R. Piñol,et al.  Nanoscale Thermometry for Hyperthermia Applications , 2019, Nanomaterials for Magnetic and Optical Hyperthermia Applications.

[13]  L. Carlos,et al.  Lanthanide‐Based Thermometers: At the Cutting‐Edge of Luminescence Thermometry , 2018, Advanced Optical Materials.

[14]  G. Krieke,et al.  How activator ion concentration affects spectroscopic properties on Ba4Y3F17: Er3+, Yb3+, a new perspective up-conversion material , 2018, Journal of Luminescence.

[15]  S. Kuznetsov,et al.  Synthesis and quantum yield investigations of the Sr(1-x-y)Pr(x)Yb(y)F(2+x+y) luminophores for photonics , 2018, Nanosystems: Physics, Chemistry, Mathematics.

[16]  Chunhua Lu,et al.  Transparent sol-gel glass ceramics containing β-NaYF4:Yb3+/Er3+ nanocrystals: Structure, upconversion luminescent properties and optical thermometry behavior , 2018, Ceramics International.

[17]  Chunhua Lu,et al.  Ce3+/Tb3+ co-doped β-NaYF4 dual-emitting phosphors for self-referencing optical thermometry , 2018, Journal of Alloys and Compounds.

[18]  P. Haro-González,et al.  Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing , 2018, Journal of Luminescence.

[19]  Chunhua Lu,et al.  β-NaYF4:Yb3+/Er3+ nanocrystals embedded sol-gel glass ceramics for self-calibrated optical thermometry , 2018, Ceramics International.

[20]  P. Fedorov,et al.  Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics , 2018, Journal of Fluorine Chemistry.

[21]  Chunhua Lu,et al.  Bundle-shaped β-NaYF 4 microrods: Hydrothermal synthesis, Gd-mediated downconversion luminescence and ratiometric temperature sensing , 2018 .

[22]  E. Zych,et al.  Widening the Temperature Range of Luminescent Thermometers through the Intra‐ and Interconfigurational Transitions of Pr3+ , 2018 .

[23]  A. A. Akhmadeev,et al.  Coprecipitation Method of Synthesis, Characterization, and Cytotoxicity of Pr3+:LaF3 (CPr = 3, 7, 12, 20, 30%) Nanoparticles , 2018 .

[24]  Carlos Zaldo,et al.  Lanthanide-based luminescent thermosensors: From bulk to nanoscale , 2018 .

[25]  Daqin Chen,et al.  A new non-contact self-calibrated optical thermometer based on Ce3+ → Tb3+ → Eu3+ energy transfer process , 2017 .

[26]  M. Yin,et al.  Structural characterization and temperature-dependent luminescence of CaF 2 :Tb 3+ /Eu 3+ glass ceramics , 2017 .

[27]  F. Huang,et al.  Intervalence charge transfer state interfered Pr3+ luminescence: A novel strategy for high sensitive optical thermometry , 2017 .

[28]  J. Yu,et al.  Facile synthesis of Er3+/Yb3+-codoped NaYF4 nanoparticles: a promising multifunctional upconverting luminescent material for versatile applications , 2016 .

[29]  M. Karbowiak,et al.  Does BaYF5 nanocrystals exist? – The BaF2-YF3 solid solution revisited using photoluminescence spectroscopy , 2016 .

[30]  Daniel Jaque,et al.  LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window , 2016 .

[31]  L. Carlos,et al.  Lanthanides in Luminescent Thermometry , 2016 .

[32]  W. Stręk,et al.  Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer. , 2015, Physical chemistry chemical physics : PCCP.

[33]  Xiaohong Yan,et al.  Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics , 2015 .

[34]  J. Jeong,et al.  An Eu/Tb-codoped inorganic apatite Ca5(PO4)3F luminescent thermometer , 2015 .

[35]  C. Duan,et al.  Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry , 2014 .

[36]  C. Duan,et al.  Pr(3+)-doped beta-NaYF4 for temperature sensing with fluorescence intensity ratio technique. , 2014, Journal of nanoscience and nanotechnology.

[37]  W. Lu,et al.  Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging. , 2013, Nanoscale.

[38]  Daniel Jaque,et al.  Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles. , 2013, ACS nano.

[39]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[40]  M. Samoć,et al.  Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. , 2012, Nanoscale.

[41]  V. Klochkov,et al.  Experimental proof of the existence of water clusters in fullerene-like PrF3 nanoparticles , 2012 .

[42]  Baojiu Chen,et al.  Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals , 2012 .

[43]  Daniel Jaque,et al.  Luminescence nanothermometry. , 2012, Nanoscale.

[44]  Liwei Lin,et al.  Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. , 2011, ACS nano.

[45]  R. P. Ermakov,et al.  Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base , 2010 .

[46]  Christian Bergaud,et al.  High-spatial-resolution surface-temperature mapping using fluorescent thermometry. , 2008, Small.

[47]  J. G. Solé,et al.  An Introduction to the Optical Spectroscopy of Inorganic Solids , 2005 .

[48]  Kenneth T. V. Grattan,et al.  Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation , 1998 .

[49]  Nevill Mott,et al.  On the absorption of light by crystals , 1938 .