Two-dimensional knapsack-block packing problem

Abstract We study the two-dimensional knapsack problem with block packing constraints that is originated from an agricultural company when placing its seed experiments into test fields. The problem extends the classical knapsack problem by considering a block packing requirement. In this problem, a single bin is divided into many disjoint blocks and each block is a union of rectangles. If an item is placed, it should be contained in one of the blocks. The objective is to select a subset of the items to be packed into the bin to maximize the space usage, or equivalently, to minimize the wasted space. We propose three types of mathematical models for addressing the problem. The efficiency of the proposed models is analyzed through numerical studies.

[1]  Sándor P. Fekete,et al.  A New Exact Algorithm for General Orthogonal D-Dimensional Knapsack Problems , 1997, ESA.

[2]  Hidetoshi Onodera,et al.  Branch-and-bound placement for building block layout , 1991, 28th ACM/IEEE Design Automation Conference.

[3]  Stephen C. H. Leung,et al.  A hybrid simulated annealing metaheuristic algorithm for the two-dimensional knapsack packing problem , 2012, Comput. Oper. Res..

[4]  Eduardo C. Xavier,et al.  Heuristics for two-dimensional knapsack and cutting stock problems with items of irregular shape , 2012, Expert Syst. Appl..

[5]  David Pisinger,et al.  Heuristics for the container loading problem , 2002, Eur. J. Oper. Res..

[6]  Andreas Bortfeldt,et al.  A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces , 2009, Int. Trans. Oper. Res..

[7]  Nicos Christofides,et al.  An Algorithm for Two-Dimensional Cutting Problems , 1977, Oper. Res..

[8]  Jian Huang,et al.  An open space based heuristic for the 2D strip packing problem with unloading constraints , 2019, Applied Mathematical Modelling.

[9]  Jens Egeblad,et al.  Heuristic approaches for the two- and three-dimensional knapsack packing problem , 2009, Comput. Oper. Res..

[10]  Guido Perboli,et al.  The three-dimensional knapsack problem with balancing constraints , 2012, Appl. Math. Comput..

[11]  Andrea Lodi,et al.  Integer linear programming models for 2-staged two-dimensional Knapsack problems , 2003, Math. Program..

[12]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[13]  K. Lai,et al.  Developing a simulated annealing algorithm for the cutting stock problem , 1997 .

[14]  Mohammad Sohel Rahman,et al.  Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls , 2006, Comput. Oper. Res..

[15]  Maw-Sheng Chern,et al.  Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem , 2014 .

[16]  Vassilis Zissimopoulos,et al.  An approximation algorithm for solving unconstrained two-dimensional knapsack problems , 1995 .

[17]  Panos M. Pardalos,et al.  Handbook of combinatorial optimization. Supplement , 2005 .

[18]  Saïd Hanafi,et al.  The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects , 2005, Ann. Oper. Res..

[19]  Yu Peng,et al.  A heuristic block-loading algorithm based on multi-layer search for the container loading problem , 2012, Comput. Oper. Res..

[20]  Stephen C. H. Leung,et al.  Three-stage heuristic algorithm for three-dimensional irregular packing problem , 2017 .

[21]  K. Teo,et al.  A Binary differential search algorithm for the 0-1 multidimensional knapsack problem , 2016 .

[22]  Nicos Christofides,et al.  An exact algorithm for general, orthogonal, two-dimensional knapsack problems , 1995 .

[23]  Daniele Vigo,et al.  Models and Bounds for Two-Dimensional Level Packing Problems , 2004, J. Comb. Optim..

[24]  R. Gomory,et al.  Multistage Cutting Stock Problems of Two and More Dimensions , 1965 .

[25]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[26]  Jin-Kao Hao,et al.  A Tabu Search Algorithm with Direct Representation for Strip Packing , 2009, EvoCOP.

[27]  Maria Grazia Speranza,et al.  Kernel search: A general heuristic for the multi-dimensional knapsack problem , 2010, Comput. Oper. Res..

[28]  Nicos Christofides,et al.  An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts , 1995 .

[29]  François Vanderbeck,et al.  Computational study of a column generation algorithm for bin packing and cutting stock problems , 1999, Math. Program..

[30]  Hans Kellerer,et al.  Approximation algorithms for knapsack problems with cardinality constraints , 2000, Eur. J. Oper. Res..

[31]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[32]  Alberto Caprara,et al.  On the two-dimensional Knapsack Problem , 2004, Oper. Res. Lett..

[33]  J. C. Herz,et al.  Recursive computational procedure for two-dimensional stock cutting , 1972 .