On Minimal Expansions in Redundant Number Systems: Algorithms and Quantitative Analysis

Abstract We consider digit expansions in base q≥2 with arbitrary integer digits such that the length of the expansion plus the sum of the absolute values of the digits is minimal. Since this does not determine a unique minimal representation, we describe some reduced minimal expansions.We completely characterize its syntactical properties, give a simple algorithm to compute the reduced minimal expansion and a formula to compute a single digit without having to compute the others, and we calculate the average cost of such an expansion.

[1]  Helmut Prodinger On binary representations of integers with digits . , 2000 .

[2]  Daniel M. Gordon,et al.  A Survey of Fast Exponentiation Methods , 1998, J. Algorithms.

[3]  George W. Reitwiesner,et al.  Binary Arithmetic , 1960, Adv. Comput..

[4]  J. Olivos,et al.  Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..

[5]  C. Mitchell,et al.  Minimum weight modified signed-digit representations and fast exponentiation , 1989 .

[6]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[7]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .

[8]  Jean-Sébastien Coron,et al.  Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems , 1999, CHES.

[9]  János Demetrovics,et al.  On 1-Representations of Integers , 1999, Acta Cybern..

[10]  Jörg M. Thuswaldner,et al.  Summatory Functions of Digital Sums Occurring in Cryptography , 1999 .

[11]  Ferrell S. Wheeler,et al.  Signed Digit Representations of Minimal Hamming Weight , 1993, IEEE Trans. Computers.

[12]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[13]  Ulrich Güntzer,et al.  Jump Interpolation Search Trees and Symmetric Binary Numbers , 1987, Inf. Process. Lett..

[14]  Helmut Prodinger,et al.  Subblock Occurrences in Positional Number Systems and Gray code Representation , 1984 .

[15]  W. Edwin Clark,et al.  On arithmetic weight for a general radix representation of integers (Corresp.) , 1973, IEEE Trans. Inf. Theory.