REVISING BELIEFS IN NONIDENTIFIED MODELS

A Bayesian analysis of a nonidentified model is always possible if a proper prior on all the parameters is specified. There is, however, no Bayesian free lunch. The “price” is that there exist quantities about which the data are uninformative, i.e., their marginal prior and posterior distributions are identical. In the case of improper priors the analysis is problematic—resulting posteriors can be improper. This study investigates both proper and improper cases through a series of examples.

[1]  Dale J. Poirier,et al.  Learning about the across-regime correlation in switching regression models , 1997 .

[2]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[3]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[4]  Joseph B. Kadane,et al.  When Several Bayesians Agree That There Will Be No Reasoning to a Foregone Conclusion , 1996, Philosophy of Science.

[5]  Joseph B. Kadane,et al.  Reasoning to a foregone conclusion , 1996 .

[6]  G. Imbens,et al.  Nonparametric Applications of Bayesian Inference , 1996 .

[7]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[8]  Dale J. Poirier,et al.  Intermediate Statistics and Econometrics: A Comparative Approach , 1995 .

[9]  Walter R. Gilks,et al.  [Bayesian Computation and Stochastic Systems]: Comment , 1995 .

[10]  David W Harless,et al.  The predictive utility of generalized expected utility theories , 1994 .

[11]  M. Sobel,et al.  Identification Problems in the Social Sciences , 1996 .

[12]  Wim P. M. Vijverberg,et al.  Measuring the unidentified parameter of the extended Roy model of selectivity , 1993 .

[13]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[14]  Robert L. Winkler,et al.  Implications of errors in survey data: a Bayesian model , 1992 .

[15]  Purushottam W. Laud,et al.  On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior , 1991 .

[16]  James O. Berger,et al.  Noninformative priors for inferences in exponential regression models , 1991 .

[17]  L. Bauwens The "pathology" of the natural conjugate prior density in the regression model , 1990 .

[18]  Proper posteriors from improper priors for an unidentified errors-in-variables model , 1989 .

[19]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[20]  Joseph B. Kadane,et al.  What is the Likelihood Function , 1988 .

[21]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[22]  David Lindley,et al.  Bayesian Statistics, a Review , 1987 .

[23]  Jacques H. Dreze,et al.  BAYESIAN ANALYSIS OF SIMULTANEOUS EQUATION SYSTEMS , 1983 .

[24]  Mervyn Stone Review and Analysis of Some Inconsistencies Related to Improper Priors and Finite Additivity , 1982 .

[25]  William D. Sudderth Finitely Additive Priors, Coherence and the Marginalization Paradox , 1980 .

[26]  Edward E. Leamer,et al.  Specification Searches: Ad Hoc Inference with Nonexperimental Data , 1980 .

[27]  A. Zellner Constraints Often Overlooked in Analyses of Simultaneous Equation Models , 1976 .

[28]  R. Engle Constraints Often Overlooked in Analyses of Simultaneous Equation Models: Comment , 1976 .

[29]  G. Maddala Constraints Often Overlooked in Analyses of Simultaneous Equation Models: Comment , 1976 .

[30]  Mervyn Stone,et al.  Strong Inconsistency from Uniform Priors , 1976 .

[31]  Jean-François Richard,et al.  Bayesian inference in error-in-variables models , 1974 .

[32]  Jacques H. Dreze,et al.  Bayesian theory of identification in simultaneous equations models , 1974 .

[33]  M. Stone,et al.  Marginalization Paradoxes in Bayesian and Structural Inference , 1973 .

[34]  Hans Genberg,et al.  Constraints on the Parameters in Two Simple Simultaneous Equation Models , 1972 .

[35]  A. P. Dawid,et al.  Un-Bayesian implications of improper Bayes inference in routine statistical problems , 1972 .

[36]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[37]  D. V. Lindley,et al.  The Bayesian Estimation of a Linear Functional Relationship , 1968 .

[38]  I. Good A Bayesian Significance Test for Multinomial Distributions , 1967 .

[39]  T. Koopmans,et al.  The Identification of Structural Characteristics , 1950 .

[40]  H. Jeffreys The Theory of Probability , 1896 .