Some constructions of cyclic and quasi-cyclic subspaces codes

In this paper we construct, using GAP System for Computational Discrete Algebra, some cyclic subspace codes, specially an optimal code over the finite field F_{2^{10}}. Further we present a definition and an example of the $q$-analogous of a $m$-quasi-cyclic subspace code over F_{2^{8}}.

[1]  Heide Gluesing-Luerssen,et al.  Cyclic orbit codes and stabilizer subfields , 2015, Adv. Math. Commun..

[2]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[3]  Jörg Widmer,et al.  Network coding: an instant primer , 2006, CCRV.

[4]  Eli Ben-Sasson,et al.  Subspace Polynomials and Cyclic Subspace Codes , 2016, IEEE Trans. Inf. Theory.

[5]  Eli Ben-Sasson,et al.  Subspace Polynomials and Cyclic Subspace Codes , 2014, IEEE Transactions on Information Theory.

[6]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[7]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[8]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[9]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.