The Empirical Validation of an Agent-based Model

The aim of this paper is to empirically validate the agent-based macroeconomic model of Gaffeo et al. [2008]. We show that the microsimulated version of the model is able to replicate actual data with a satisfactory degree of precision. From a theoretical point of view, our validation approach is made up of three different steps: a calibrated microsimulation of the model with actual data, an ex-post descriptive validation of the results, and a simple calibration exercise to ameliorate the goodness-of-fit of the model. The validation procedure of this paper has been performed using Italian data.

[1]  Giulio Bottazzi,et al.  Explaining the Distribution of Firms Growth Rates , 2005 .

[2]  Mauro Gallegati,et al.  Validation in agent-based models: an investigation on the CATS model , 2008 .

[3]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[4]  Paul Windrum,et al.  A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems , 2007 .

[5]  Jack P. C. Kleijnen,et al.  EUROPEAN JOURNAL OF OPERATIONAL , 1992 .

[6]  Pasquale Cirillo,et al.  On the upper tail of Italian firms' size distribution , 2009 .

[7]  Mauro Gallegati,et al.  Power Law Scaling in the World Income Distribution , 2003 .

[8]  D. N. Prabhakar Murthy,et al.  Taxonomy for Weibull Models , 2003 .

[9]  Pasquale Cirillo An analysis of the size distribution of Italian firms by age , 2010 .

[10]  Herbert Dawid,et al.  Skills, Innovation, and Growth: An Agent-Based Policy Analysis , 2008 .

[11]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[12]  James B. McDonald,et al.  Some Generalized Functions for the Size Distribution of Income , 1984 .

[13]  Peter Winker,et al.  A global optimization heuristic for estimating agent based models , 2003, Comput. Stat. Data Anal..

[14]  Shu-Heng Chen,et al.  Trends in agent-based computational modeling of macroeconomics , 2005, New Generation Computing.

[15]  Mauro Gallegati,et al.  Macroeconomics from the Bottom-up , 2011 .

[16]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[17]  N. Kaldor Capital Accumulation and Economic Growth , 1961 .

[18]  Thomas Lux,et al.  Empirical validation of stochastic models of interacting agents , 2007 .

[19]  Reflections on modern macroeconomics: Can we travel along a safer road? , 2006, physics/0608148.

[20]  Joseph E. Stiglitz,et al.  FINANCIAL MARKETS AND DEVELOPMENT , 1989 .

[21]  H. A. Simon,et al.  Skew Distributions and the Size of Business Firms , 1977 .

[22]  Robert L. Axtell,et al.  Aligning simulation models: A case study and results , 1996, Comput. Math. Organ. Theory.

[23]  Mauro Gallegati,et al.  Industrial dynamics, fiscal policy and R&D: evidence from a computational experiment , 2007 .

[24]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: I Epirical results for company growth , 1997, cond-mat/9702082.

[25]  R. Axtell Zipf Distribution of U.S. Firm Sizes , 2001, Science.

[26]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[27]  Mauro Gallegati,et al.  Complex agent-based macroeconomics: a manifesto for a new paradigm , 2010 .

[28]  M. Raberto,et al.  Credit Money and Macroeconomic Instability in the Agent-based Model and Simulator Eurace , 2010 .

[29]  Robert L. Axtell,et al.  WHY AGENTS? ON THE VARIED MOTIVATIONS FOR AGENT COMPUTING IN THE SOCIAL SCIENCES , 2000 .

[30]  Andrea Bonaccorsi,et al.  On the Relationship Between Firm Size and Export Intensity , 1992 .

[31]  H. Takayasu,et al.  Zipf's law in income distribution of companies , 1999 .

[32]  Bronwyn H Hall,et al.  The Relationship between Firm Size and Firm Growth in the U.S. Manufacturing Sector , 1986 .

[33]  A. Secchi,et al.  Explaining the distribution of firm growth rates , 2006 .

[34]  Jeremy J. Ramsden,et al.  Company size distribution in different countries , 2000 .

[35]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[36]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[37]  E. Feigenbaum Simon, Herbert A. , 2006 .

[38]  Y. Fujiwara Zipf Law in Firms Bankruptcy , 2003, cond-mat/0310062.

[39]  Haber Gottfried,et al.  Monetary and Fiscal Policy Analysis With an Agent-Based Macroeconomic Model , 2008 .

[40]  陳樹衡,et al.  Agent-Based Computational Macroeconomics: A Survey , 2002 .

[41]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[42]  N. Anders Klevmarken,et al.  Statistical inference in micro-simulation models: incorporating external information , 2002, Math. Comput. Simul..

[43]  Mauro Gallegati,et al.  Adaptive Microfoundations for Emergent Macroeconomics , 2008 .

[44]  Jean-Noël Bacro,et al.  A statistical test procedure for the shape parameter of a generalized Pareto distribution , 2004, Comput. Stat. Data Anal..

[45]  J. Lovelock Gaia: A New Look at Life on Earth , 1979 .

[46]  A. Hadi,et al.  Fitting the Generalized Pareto Distribution to Data , 1997 .

[47]  Mauro Gallegati,et al.  Validating and Calibrating Agent-Based Models: A Case Study , 2007 .

[48]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[49]  D. Gatti,et al.  A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility , 2003, cond-mat/0312096.