Computing Modular Data for Drinfeld Centers of Pointed Fusion Categories

A theoretical background is developed to explain in detail the link between the modular tensor category Z(VecG) and the representation category of a quasitriangular quasi Hopf algebra D G. Using this link, a classification of the simple objects in Z(VecG) and formulas for the modular data of Z(VecG) are carefully derived. Then, code is written in GAP to produce the modular data of Z(VecG), givenω and G. This is used to create a database of modular data for the Drinfeld doubles of pointed fusion categories with dimension less than 47. This database as well as GAP code accompanying it can be found at https://tqft.net/web/research/ students/AngusGruen. For a basic example of how this database might be used, we briefly analyse patterns in the ranks of Z(VecG) as |G| varies and produce lower bounds for the number of Morita equivalence classes of pointed fusion categories of a given dimension less than 47. For dimensions below 32, these lower bounds agree with the lower bounds published by Mignard and Schauenburg in [1]. At dimension 32 we improve upon the published lower bound and for dimensions 33 through 47 we present the first set of lower bounds on the number of Morita equivalence classes of pointed fusion categories at each dimension.