Mercury is a transition metal: the first experimental evidence for HgF(4).

[1]  M. Straka,et al.  Can weakly coordinating anions stabilize mercury in its oxidation state +IV? , 2005, Chemistry.

[2]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[3]  A. Snelson Infrared Spectra of Some Alkaline Earth Halides by the Matrix Isolation Technique , 1966 .

[4]  M. Jacox The reaction of F atoms with O2 in an argon matrix: Vibrational spectra and photochemistry of FO2 and O2F2 , 1980 .

[5]  M. Straka,et al.  Validation of density functional methods for computing structures and energies of mercury(iv) complexesElectronic supplementary information (ESI) available: Structure of transition state for HgH4 dissociation and tables with CP-connections and transition state structures. See http://www.rsc.org/supp , 2004 .

[6]  V. A. Apkarian,et al.  Photodissociation of F2 and mobility of F atoms in crystalline argon , 1990 .

[7]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[8]  C. Jørgensen Conditions for stability of oxidation states derived from photo-electron spectra and inductive quantum chemistry† , 1986 .

[9]  H. Schnering,et al.  Molekulares Quecksilber(IV)-fluorid, HgF4: eine ab-initio-Untersuchung† , 1993 .

[10]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[11]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[12]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[13]  N. G. Rambidi,et al.  Gas-Phase electron-diffraction study of the molecular structures of some group IIA dihalides , 1980 .

[14]  S. Riedel,et al.  Revising the highest oxidation states of the 5d elements: the case of iridium(+VII). , 2006, Angewandte Chemie.

[15]  M. Jacox The Vibrational Energy Levels of Small Transient Molecules Isolated in Neon and Argon Matrices , 1994 .

[16]  A. Loewenschuss,et al.  Matrix isolation infrared and Raman spectra of binary and mixed group II B fluorides , 1980 .

[17]  P. Schwerdtfeger,et al.  The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4 , 1997 .

[18]  M. Straka,et al.  HgH4 and HgH6: further candidates for high-valent mercury compounds. , 2002, Chemical Communications.

[19]  Lester Andrews,et al.  Matrix infrared spectra and density functional calculations of transition metal hydrides and dihydrogen complexes. , 2004, Chemical Society reviews.

[20]  Xuefeng Wang,et al.  Mercury dihydride forms a covalent molecular solid. , 2005, Physical Chemistry, Chemical Physics - PCCP.

[21]  Wenjian Liu,et al.  Relativistic ab initio and density functional theory calculations on the mercury fluorides: Is HgF4 thermodynamically stable? , 1999 .

[22]  M. Kaupp,et al.  Die höchsten Oxidationszustände der 5d‐Elemente: der Fall Iridium(+VII) , 2006 .

[23]  C. Jørgensen The periodical table and induction as basis of chemistry , 1979 .

[24]  A. Dahl,et al.  Tripositive mercury. Low temperature electrochemical oxidation of 1,4,8,11-tetraazacyclotetradecanemercury(II) tetrafluoroborate , 1976 .

[25]  Jan M.L. Martin,et al.  Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe , 2001 .

[26]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[27]  Peter Schwerdtfeger,et al.  Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .

[28]  J. Burkholder,et al.  Fourier transform infrared spectra of the FO2 radical , 1987 .

[29]  M. Kaupp,et al.  Dominance of Linear 2-Coordination in Mercury Chemistry: Quasirelativistic and Nonrelativistic ab Initio Pseudopotential Study of (HgX2)2 (X = F, Cl, Br, I, H) , 1994 .

[30]  S. Riedel,et al.  After 20 Years, Theoretical Evidence That “AuF7” Is Actually AuF5·F2† , 2007 .

[31]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[32]  Martin Kaupp,et al.  Gaseous Mercury(IV) Fluoride, HgF4: An Ab Initio Study , 1993 .

[33]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[34]  M. Kaupp,et al.  Oxidation state +IV in group 12 chemistry. Ab initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides , 1994 .

[35]  R. Nesper,et al.  Ein neuer Blick auf die Elektronenlokalisierung , 1991 .

[36]  R. Hunt,et al.  Photolysis of hydrogen and fluorine in solid argon. Matrix infrared spectra of (HF)2, (HF) (DF), and (DF)2 , 1985 .

[37]  Xuefeng Wang,et al.  Infrared spectrum of Hg(OH)2 in solid neon and argon. , 2005, Inorganic chemistry.

[38]  Lester Andrews,et al.  Infrared Spectra of Zn and Cd Hydride Molecules and Solids , 2004 .