Mercury is a transition metal: the first experimental evidence for HgF(4).
暂无分享,去创建一个
Sebastian Riedel | Martin Kaupp | Lester Andrews | S. Riedel | M. Kaupp | L. Andrews | Xuefang Wang | Xuefang Wang
[1] M. Straka,et al. Can weakly coordinating anions stabilize mercury in its oxidation state +IV? , 2005, Chemistry.
[2] A. Becke. Density-functional thermochemistry. III. The role of exact exchange , 1993 .
[3] A. Snelson. Infrared Spectra of Some Alkaline Earth Halides by the Matrix Isolation Technique , 1966 .
[4] M. Jacox. The reaction of F atoms with O2 in an argon matrix: Vibrational spectra and photochemistry of FO2 and O2F2 , 1980 .
[5] M. Straka,et al. Validation of density functional methods for computing structures and energies of mercury(iv) complexesElectronic supplementary information (ESI) available: Structure of transition state for HgH4 dissociation and tables with CP-connections and transition state structures. See http://www.rsc.org/supp , 2004 .
[6] V. A. Apkarian,et al. Photodissociation of F2 and mobility of F atoms in crystalline argon , 1990 .
[7] Hermann Stoll,et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .
[8] C. Jørgensen. Conditions for stability of oxidation states derived from photo-electron spectra and inductive quantum chemistry† , 1986 .
[9] H. Schnering,et al. Molekulares Quecksilber(IV)-fluorid, HgF4: eine ab-initio-Untersuchung† , 1993 .
[10] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .
[11] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[12] N. N. Greenwood,et al. Chemistry of the elements , 1984 .
[13] N. G. Rambidi,et al. Gas-Phase electron-diffraction study of the molecular structures of some group IIA dihalides , 1980 .
[14] S. Riedel,et al. Revising the highest oxidation states of the 5d elements: the case of iridium(+VII). , 2006, Angewandte Chemie.
[15] M. Jacox. The Vibrational Energy Levels of Small Transient Molecules Isolated in Neon and Argon Matrices , 1994 .
[16] A. Loewenschuss,et al. Matrix isolation infrared and Raman spectra of binary and mixed group II B fluorides , 1980 .
[17] P. Schwerdtfeger,et al. The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2, and (112)F4 , 1997 .
[18] M. Straka,et al. HgH4 and HgH6: further candidates for high-valent mercury compounds. , 2002, Chemical Communications.
[19] Lester Andrews,et al. Matrix infrared spectra and density functional calculations of transition metal hydrides and dihydrogen complexes. , 2004, Chemical Society reviews.
[20] Xuefeng Wang,et al. Mercury dihydride forms a covalent molecular solid. , 2005, Physical Chemistry, Chemical Physics - PCCP.
[21] Wenjian Liu,et al. Relativistic ab initio and density functional theory calculations on the mercury fluorides: Is HgF4 thermodynamically stable? , 1999 .
[22] M. Kaupp,et al. Die höchsten Oxidationszustände der 5d‐Elemente: der Fall Iridium(+VII) , 2006 .
[23] C. Jørgensen. The periodical table and induction as basis of chemistry , 1979 .
[24] A. Dahl,et al. Tripositive mercury. Low temperature electrochemical oxidation of 1,4,8,11-tetraazacyclotetradecanemercury(II) tetrafluoroborate , 1976 .
[25] Jan M.L. Martin,et al. Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe , 2001 .
[26] Mark S. Gordon,et al. General atomic and molecular electronic structure system , 1993, J. Comput. Chem..
[27] Peter Schwerdtfeger,et al. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .
[28] J. Burkholder,et al. Fourier transform infrared spectra of the FO2 radical , 1987 .
[29] M. Kaupp,et al. Dominance of Linear 2-Coordination in Mercury Chemistry: Quasirelativistic and Nonrelativistic ab Initio Pseudopotential Study of (HgX2)2 (X = F, Cl, Br, I, H) , 1994 .
[30] S. Riedel,et al. After 20 Years, Theoretical Evidence That “AuF7” Is Actually AuF5·F2† , 2007 .
[31] Reinhard Nesper,et al. A New Look at Electron Localization , 1991 .
[32] Martin Kaupp,et al. Gaseous Mercury(IV) Fluoride, HgF4: An Ab Initio Study , 1993 .
[33] Axel D. Becke,et al. A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .
[34] M. Kaupp,et al. Oxidation state +IV in group 12 chemistry. Ab initio study of zinc(IV), cadmium(IV), and mercury(IV) fluorides , 1994 .
[35] R. Nesper,et al. Ein neuer Blick auf die Elektronenlokalisierung , 1991 .
[36] R. Hunt,et al. Photolysis of hydrogen and fluorine in solid argon. Matrix infrared spectra of (HF)2, (HF) (DF), and (DF)2 , 1985 .
[37] Xuefeng Wang,et al. Infrared spectrum of Hg(OH)2 in solid neon and argon. , 2005, Inorganic chemistry.
[38] Lester Andrews,et al. Infrared Spectra of Zn and Cd Hydride Molecules and Solids , 2004 .