Natural Boundary Conditions for Smoothing in Geometry Processing

In geometry processing, smoothness energies are commonly used to model scattered data interpolation, dense data denoising, and regularization during shape optimization. The squared Laplacian energy is a popular choice of energy and has a corresponding standard implementation: squaring the discrete Laplacian matrix. For compact domains, when values along the boundary are not known in advance, this construction bakes in low-order boundary conditions. This causes the geometric shape of the boundary to strongly bias the solution. For many applications, this is undesirable. Instead, we propose using the squared Frobenius norm of the Hessian as a smoothness energy. Unlike the squared Laplacian energy, this energy’s natural boundary conditions (those that best minimize the energy) correspond to meaningful high-order boundary conditions. These boundary conditions model free boundaries where the shape of the boundary should not bias the solution locally. Our analysis begins in the smooth setting and concludes with discretizations using finite-differences on 2D grids or mixed finite elements for triangle meshes. We demonstrate the core behavior of the squared Hessian as a smoothness energy for various tasks.

[1]  Stephan Didas,et al.  Relations Between Higher Order TV Regularization and Support Vector Regression , 2005, Scale-Space.

[2]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[3]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[4]  Yiying Tong,et al.  FaceWarehouse: A 3D Facial Expression Database for Visual Computing , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Petros Daras,et al.  SHREC 2009 - Shape Retrieval Contest of Partial 3D Models | NIST , 2009 .

[6]  Eitan Grinspun,et al.  A quadratic bending model for inextensible surfaces , 2006, SGP '06.

[7]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[8]  M. I. Comodi The Hellan-Herrmann-Johnson method: some new error estimates and postprocessing , 1989 .

[9]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[10]  Michael Unser,et al.  Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications , 2012, IEEE Transactions on Image Processing.

[11]  Ben Jones,et al.  Example-based plastic deformation of rigid bodies , 2016, ACM Trans. Graph..

[12]  Christopher Batty Simulating Viscous Incompressible Fluids with Embedded Boundary Finite Difference Methods , 2010 .

[13]  Olga Sorkine-Hornung,et al.  Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters , 2014, TOGS.

[14]  Dietrich Braess,et al.  Numerical Analysis and Scientific Computing Preprint Seria A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation , 2016 .

[15]  Daniele Panozzo,et al.  libigl: prototyping geometry processing research in C++ , 2017, SIGGRAPH ASIA.

[16]  Reinhard Scholz A mixed method for 4th order problems using linear finite elements , 1978 .

[17]  Florian Steinke,et al.  Non-parametric Regression Between Manifolds , 2008, NIPS.

[18]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[19]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[20]  Thabo Beeler,et al.  Real-time high-fidelity facial performance capture , 2015, ACM Trans. Graph..

[21]  D. Braess,et al.  An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods , 2017, 1705.07607.

[22]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[23]  GrinspunEitan,et al.  Natural Boundary Conditions for Smoothing in Geometry Processing , 2018 .

[24]  Jernej Barbic,et al.  Linear subspace design for real-time shape deformation , 2015, ACM Trans. Graph..

[25]  B. Fornberg Generation of finite difference formulas on arbitrarily spaced grids , 1988 .

[26]  Alexander M. Bronstein,et al.  Consistent Discretization and Minimization of the L1 Norm on Manifolds , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[27]  Kun Zhou,et al.  Subspace gradient domain mesh deformation , 2006, ACM Trans. Graph..

[28]  Jing Yuan,et al.  Total-Variation Based Piecewise Affine Regularization , 2009, SSVM.

[29]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[30]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[31]  Roi Poranne,et al.  Biharmonic Coordinates , 2012, Comput. Graph. Forum.

[32]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[33]  Eitan Grinspun,et al.  Cubic shells , 2007, SCA '07.

[34]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[35]  Raif M. Rustamov,et al.  Multiscale Biharmonic Kernels , 2011, Comput. Graph. Forum.

[36]  R. Courant,et al.  Methoden der mathematischen Physik , .

[37]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[39]  Pierre Alliez,et al.  Spectral Conformal Parameterization , 2008, Comput. Graph. Forum.

[40]  Todor Georgiev Photoshop Healing Brush : a Tool for Seamless Cloning , 2004 .

[41]  Bishnu P. Lamichhane,et al.  A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems , 2011, J. Comput. Appl. Math..

[42]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[44]  Florian Steinke,et al.  Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction , 2009, NIPS.

[45]  James Andrews,et al.  A Linear Variational System for Modelling From Curves , 2011, Comput. Graph. Forum.

[46]  Maks Ovsjanikov,et al.  Discrete Derivatives of Vector Fields on Surfaces -- An Operator Approach , 2015, ACM Trans. Graph..

[47]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[48]  Yiying Tong,et al.  Discrete 2‐Tensor Fields on Triangulations , 2014, Comput. Graph. Forum.

[49]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[50]  Hao Zhang,et al.  Spectral Methods for Mesh Processing and Analysis , 2007, Eurographics.

[51]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Properties of Higher Order Nonlinear Diffusion Filtering Properties of Higher Order Nonlinear Diffusion Filtering , 2022 .

[52]  W. L. Li FREE VIBRATIONS OF BEAMS WITH GENERAL BOUNDARY CONDITIONS , 2000 .

[53]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[54]  Christoph von Tycowicz,et al.  Interactive surface modeling using modal analysis , 2011, TOGS.

[55]  J. Weickert,et al.  Higher Order Variational Methods for Noise Removal in Signals and Images , 2004 .

[56]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[57]  Scott Schaefer,et al.  Poisson‐Based Weight Reduction of Animated Meshes , 2010, Comput. Graph. Forum.

[58]  Alec Jacobson,et al.  Skinning: real-time shape deformation , 2014, SIGGRAPH ASIA Courses.

[59]  Erkut Erdem Noise Removal , 2014, Computer Vision, A Reference Guide.

[60]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Olga Sorkine-Hornung,et al.  Topology‐based Smoothing of 2D Scalar Fields with C1‐Continuity , 2010, Comput. Graph. Forum.

[62]  X. Y. Liu,et al.  A fourth-order partial differential equation denoising model with an adaptive relaxation method , 2015, Int. J. Comput. Math..

[63]  D. Braess BOOK REVIEW: Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn , 2002 .

[64]  Kun Zhou,et al.  Deformation Transfer to Multi‐Component Objects , 2010, Comput. Graph. Forum.

[65]  Demetri Terzopoulos Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representations , 1982 .

[66]  Lei He,et al.  Mesh denoising via L0 minimization , 2013, ACM Trans. Graph..

[67]  Peter-Pike J. Sloan,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, ACM Trans. Graph..

[68]  Olga Sorkine-Hornung,et al.  Mixed Finite Elements for Variational Surface Modeling , 2010, Comput. Graph. Forum.

[69]  Yiying Tong,et al.  Discrete Connection and Covariant Derivative for Vector Field Analysis and Design , 2016, ACM Trans. Graph..

[70]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[71]  John Snyder,et al.  Freeform vector graphics with controlled thin-plate splines , 2011, ACM Trans. Graph..

[72]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[73]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[74]  Christopher Wojtan,et al.  Generalized non-reflecting boundaries for fluid re-simulation , 2016, ACM Trans. Graph..

[75]  Yotam I. Gingold,et al.  Shape optimization using reflection lines , 2007, Symposium on Geometry Processing.

[76]  L. M. Milne-Thomson Methoden der mathematischen Physik , 1944, Nature.

[77]  Adam W. Bargteil,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, SIGGRAPH 2011.

[78]  Ofir Weber,et al.  Bounded distortion harmonic mappings in the plane , 2015, ACM Trans. Graph..

[79]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[80]  Gabriele Steidl,et al.  A Note on the Dual Treatment of Higher-Order Regularization Functionals , 2005, Computing.

[81]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[82]  Kun Zhou,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, ACM Trans. Graph..

[83]  Jovan Popovic,et al.  Automatic rigging and animation of 3D characters , 2007, ACM Trans. Graph..

[84]  Yotam I. Gingold,et al.  A direct texture placement and editing interface , 2006, UIST.

[85]  Olga Sorkine-Hornung,et al.  Smooth Shape‐Aware Functions with Controlled Extrema , 2012, Comput. Graph. Forum.