Primal and dual alternating direction algorithms for ℓ1-ℓ1-norm minimization problems in compressive sensing
暂无分享,去创建一个
Hong Zhu | Yunhai Xiao | Soon-Yi Wu | Soon-Yi Wu | Yunhai Xiao | Hong Zhu
[1] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[2] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[3] Gabriele Steidl,et al. Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.
[4] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[5] John Wright,et al. Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.
[6] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[7] José M. Bioucas-Dias,et al. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.
[8] Simon Setzer,et al. Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.
[9] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[10] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[11] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[12] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[13] Y. Zhang,et al. Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization , 2014, Optim. Methods Softw..
[14] D. Donoho. For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .
[15] Kim-Chuan Toh,et al. A coordinate gradient descent method for ℓ1-regularized convex minimization , 2011, Comput. Optim. Appl..
[16] Yun-Hai Xiao,et al. An alternating direction method for linear‐constrained matrix nuclear norm minimization , 2012, Numer. Linear Algebra Appl..
[17] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[18] Michael K. Ng,et al. Fast minimization methods for solving constrained total-variation superresolution image reconstruction , 2011, Multidimens. Syst. Signal Process..
[19] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[20] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[21] Stanley Osher,et al. A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..
[22] Xiaoming Yuan,et al. Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..
[23] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[24] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[25] Xiaoming Yuan,et al. A descent method for structured monotone variational inequalities , 2007, Optim. Methods Softw..
[26] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[27] Bingsheng He,et al. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..
[28] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[29] Ernie Esser,et al. Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .
[30] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[31] Stephen J. Wright,et al. Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.
[32] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[33] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[34] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[35] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[36] B. He,et al. Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .
[37] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.