Computational modeling in systems biology.

Interactions among cellular constituents play a crucial role in overall cellular function and organization. These interactions can be viewed as being complementary to the usual "parts list" of genes and proteins and, in conjunction with the expression states of these parts, are key to a systems level understanding of the cell. Here, we review computational approaches to the understanding of the functional roles of cellular networks, ranging from "static" models of network topology to dynamical and stochastic simulations.

[1]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[2]  H. Sauro,et al.  Conservation analysis in biochemical networks: computational issues for software writers. , 2004, Biophysical chemistry.

[3]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[4]  Pawan Dhar,et al.  Modeling and simulation of biological systems with stochasticity , 2004, Silico Biol..

[5]  C. Rao,et al.  Control motifs for intracellular regulatory networks. , 2001, Annual review of biomedical engineering.

[6]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[7]  Alpan Raval,et al.  Identifying Hubs in Protein Interaction Networks , 2009, PloS one.

[8]  Irina Surovtsova,et al.  Approaches to Complexity Reduction in a Systems Biology Research Environment (SYCAMORE) , 2006, Proceedings of the 2006 Winter Simulation Conference.

[9]  P. Bork,et al.  Identification and analysis of evolutionarily cohesive functional modules in protein networks. , 2006, Genome research.

[10]  Inyoung Kim,et al.  Bayesian Methods for Predicting Interacting Protein Pairs Using Domain Information , 2007, Biometrics.

[11]  Jan-Hendrik S. Hofmeyr,et al.  Modelling cellular systems with PySCeS , 2005, Bioinform..

[12]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[13]  Herbert M. Sauro,et al.  Conservation analysis of large biochemical networks , 2006, Bioinform..

[14]  S Fuhrman,et al.  Reveal, a general reverse engineering algorithm for inference of genetic network architectures. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[15]  George M. Church,et al.  Estimating and improving protein interaction error rates , 2004 .

[16]  Minghua Deng,et al.  Inferring Domain–Domain Interactions From Protein–Protein Interactions , 2002 .

[17]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[18]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[19]  Zoubin Ghahramani,et al.  Modeling T-cell activation using gene expression profiling and state-space models , 2004, Bioinform..

[20]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[21]  Arun K. Ramani,et al.  How complete are current yeast and human protein-interaction networks? , 2006, Genome Biology.

[22]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[23]  Marc Vidal,et al.  Confirmation of Organized Modularity in the Yeast Interactome , 2007, PLoS biology.

[24]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Shan Zhao,et al.  Mining protein networks for synthetic genetic interactions , 2008, BMC Bioinformatics.

[27]  R Ekins,et al.  Microarrays: their origins and applications. , 1999, Trends in biotechnology.

[28]  Roger Guimerà,et al.  A network-based method for target selection in metabolic networks , 2007, Bioinform..

[29]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[30]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[31]  D. Cavalieri,et al.  Fundamentals of cDNA microarray data analysis. , 2003, Trends in genetics : TIG.

[32]  Rosita Guido,et al.  Taming the complexity of biological pathways through parallel computing , 2008, Briefings Bioinform..

[33]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[34]  J. Hacia Resequencing and mutational analysis using oligonucleotide microarrays , 1999, Nature Genetics.

[35]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[36]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[37]  D. Lauffenburger,et al.  Computational modeling of the EGF-receptor system: a paradigm for systems biology. , 2003, Trends in cell biology.

[38]  Zoubin Ghahramani,et al.  A Bayesian approach to reconstructing genetic regulatory networks with hidden factors , 2005, Bioinform..

[39]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[40]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[41]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[42]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Wen-Hsiung Li,et al.  Evolution of the yeast protein interaction network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[45]  Frank T. Bergmann,et al.  Computational Tools for Modeling Protein Networks , 2006 .

[46]  Berend Snel,et al.  Quantifying modularity in the evolution of biomolecular systems. , 2004, Genome research.

[47]  Min Zou,et al.  A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data , 2005, Bioinform..

[48]  Stefan Michiels,et al.  Prediction of cancer outcome with microarrays: a multiple random validation strategy , 2005, The Lancet.

[49]  Mark Gerstein,et al.  Information assessment on predicting protein-protein interactions , 2004, BMC Bioinformatics.

[50]  George M Church,et al.  A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. , 2005, Genome research.

[51]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[52]  Carsten Peterson,et al.  Transcriptional Dynamics of the Embryonic Stem Cell Switch , 2006, PLoS Comput. Biol..

[53]  M. Solomon,et al.  Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[55]  P. Goodfellow,et al.  DNA microarrays in drug discovery and development , 1999, Nature Genetics.

[56]  Hong Li,et al.  Algorithms and Software for Stochastic Simulation of Biochemical Reacting Systems , 2008, Biotechnology progress.

[57]  Alisdair R Fernie,et al.  Predictive Metabolic Engineering: A Goal for Systems Biology1 , 2003, Plant Physiology.

[58]  Eliot Marshall,et al.  Getting the Noise Out of Gene Arrays , 2004, Science.

[59]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.

[61]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[62]  Changning Liu,et al.  Integrated analysis of multiple data sources reveals modular structure of biological networks. , 2006, Biochemical and biophysical research communications.

[63]  P. Brown,et al.  Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions , 2001, Genome Biology.

[64]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[66]  O Wolkenhauer,et al.  Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB. , 2006, Systems biology.

[67]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[68]  P. Bork,et al.  Genome evolution reveals biochemical networks and functional modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Tyers,et al.  Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network , 2006, PLoS biology.

[70]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[71]  M. Tyers,et al.  Still Stratus Not Altocumulus: Further Evidence against the Date/Party Hub Distinction , 2007, PLoS biology.

[72]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[74]  R. Nadon,et al.  Statistical issues with microarrays: processing and analysis. , 2002, Trends in genetics : TIG.

[75]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[76]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[77]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[78]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[79]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[80]  John Quackenbush,et al.  Computational genetics: Computational analysis of microarray data , 2001, Nature Reviews Genetics.

[81]  Natasa Przulj,et al.  Modelling protein–protein interaction networks via a stickiness index , 2006, Journal of The Royal Society Interface.

[82]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[83]  Pedro de Atauri,et al.  Metabolic control analysis in drug discovery and disease , 2002, Nature Biotechnology.

[84]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[85]  W. J. STILLMAN A Cordial Recognition , 1889, Nature.

[86]  Herbert M. Sauro,et al.  Bifurcation discovery tool , 2005, Bioinform..

[87]  Ariel Fernández,et al.  Molecular Basis for Evolving Modularity in the Yeast Protein Interaction Network , 2007, PLoS Comput. Biol..

[88]  S. L. Wong,et al.  Combining biological networks to predict genetic interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[90]  D. Fell Metabolic control analysis: a survey of its theoretical and experimental development. , 1992, The Biochemical journal.

[91]  Gary D Bader,et al.  Computational Prediction of Protein–Protein Interactions , 2008, Molecular biotechnology.

[92]  Herbert M. Sauro,et al.  SBW - A Modular Framework for Systems Biology , 2006, Proceedings of the 2006 Winter Simulation Conference.

[93]  S. Fields,et al.  Protein-protein interactions: methods for detection and analysis , 1995, Microbiological reviews.

[94]  J. Heijnen,et al.  A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. , 2004, European journal of biochemistry.

[95]  D. Kell Systems biology, metabolic modelling and metabolomics in drug discovery and development. , 2006, Drug discovery today.

[96]  Sean R. Collins,et al.  Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions. , 2006, Methods.

[97]  Inyoung Kim,et al.  Protein interaction predictions from diverse sources. , 2008, Drug discovery today.

[98]  Eric J. Deeds,et al.  A simple physical model for scaling in protein-protein interaction networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Joel S. Bader,et al.  Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps , 2007, PLoS Comput. Biol..

[100]  M. Ptashne,et al.  Converting a eukaryotic transcriptional inhibitor into an activator , 1988, Cell.

[101]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[102]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[103]  Hamid Bolouri,et al.  Dizzy: Stochastic Simulation of Large-scale Genetic Regulatory Networks , 2005, J. Bioinform. Comput. Biol..

[104]  Herbert M. Sauro,et al.  Stochastic simulation GUI for biochemical networks , 2007, Bioinform..

[105]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[106]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[107]  M. Reinders,et al.  Genetic network modeling. , 2002, Pharmacogenomics.

[108]  Ziv Bar-Joseph,et al.  Evaluation of different biological data and computational classification methods for use in protein interaction prediction , 2006, Proteins.

[109]  Herbert M. Sauro,et al.  Bioinformatics Applications Note Comparing Simulation Results of Sbml Capable Simulators , 2022 .

[110]  Herbert M. Sauro,et al.  Complexity Reduction of Biochemical Networks , 2006, Proceedings of the 2006 Winter Simulation Conference.

[111]  Xiang-Sun Zhang,et al.  Hubs with Network Motifs Organize Modularity Dynamically in the Protein-Protein Interaction Network of Yeast , 2007, PloS one.

[112]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[113]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[114]  Nagasuma R. Chandra,et al.  Flux balance analysis of biological systems: applications and challenges , 2009, Briefings Bioinform..

[115]  Joel S. Bader,et al.  Precision and recall estimates for two-hybrid screens , 2008, Bioinform..

[116]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[117]  David McMillen,et al.  Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks , 2004, BMC Bioinformatics.

[118]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[119]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[120]  Andrea Califano,et al.  Theory and Limitations of Genetic Network Inference from Microarray Data , 2007, Annals of the New York Academy of Sciences.

[121]  Eberhard O. Voit,et al.  Estimating parameters for generalized mass action models with connectivity information , 2009, BMC Bioinformatics.