DIFFERENT EVOLUTIONARY STAGES IN THE MASSIVE STAR-FORMING REGION W3 MAIN COMPLEX

Aims. Massive stars form in clusters, and they are often found in different evolutionary stages located close to each other. To understand evolutionary and environmental effects during the formation of high-mass stars, we observed three regions of massive star formation at different evolutionary stages that reside in the same natal molecular cloud. Methods. The three regions S255IR, S255N and S255S were observed at 1.3 mm with the Submillimeter Array (SMA) and followup short spacing information was obtained with the IRAM 30m telescope. Near infrared (NIR) H + K-band spectra and continuum observations were taken for S255IR with VLT-SINFONI to study the different stellar populations in this region. Results. The combination of millimeter (mm) and near infrared data allow us to characterize different stellar populations within the young forming cluster in detail. While we find multiple mm con tinuum sources toward all regions, their outflow, disk and ch emical properties vary considerably. The most evolved source S255IR exhibits a collimated bipolar outflow visible in CO and H 2 emission, the outflows from the youngest region S255S are still small an d rather confined in the regions of the mm continuum peaks. Als o the chemistry toward S255IR is most evolved exhibiting strong emission from complex molecules, while much fewer molecular lines are detected in S255N, and in S255S we detect only CO isotopologues and SO lines. Also, rotational structures are found toward S255N and S255IR. Furthermore, a comparison of the NIR SINFONI and mm data from S255IR clearly reveal two different (proto) stellar populations with an estimated age difference of approximately 1 Myr. Conclusions. A multi-wavelength spectroscopy and mapping study reveals different evolutionary phases of the star formation regions. We propose the triggered outside-in collapse star formation scenario for the bigger picture and the fragmentation scenario for S255IR.

[1]  C. Wynn-Williams,et al.  Luminous Radio-quiet Sources in W3(Main) , 1993 .

[2]  L. Mundy,et al.  Methyl cyanide hot and warm cores in Orion: Statistical equilibrium excitation models of a symmetric-top molecule , 1984 .

[3]  P. Goldsmith,et al.  Detection of Methanol in a Class 0 Protostellar Disk , 1999 .

[4]  E. Feigelson,et al.  The Diverse Stellar Populations of the W3 Star-forming Complex , 2007, 0710.0090.

[5]  F. D. Tak,et al.  Millimeter interferometry of W3 IRS5 ⋆ : A Trapezium in the making , 2008, 0809.0292.

[6]  The Physical and Chemical Structure of Hot Molecular Cores , 2003, astro-ph/0311246.

[7]  Qizhou Zhang,et al.  Multiple Jets from the High-Mass (Proto)stellar Cluster AFGL 5142 , 2006, astro-ph/0612027.

[8]  S. Megeath,et al.  Hubble Space Telescope NICMOS Imaging of W3 IRS 5: A Trapezium in the Making? , 2005, astro-ph/0502358.

[9]  E. Seaquist,et al.  Formaldehyde as a Tracer of Extragalactic Molecular Gas. I. Para-H2CO Emission from M82 , 2007, 0708.1710.

[10]  H. Zinnecker,et al.  Toward Understanding Massive Star Formation , 2007, 0707.1279.

[11]  S. Horiuchi,et al.  Kinematics and Distance of Water Masers in W3 IRS 5 , 2000 .

[12]  G. F. Mitchell,et al.  A CO J = 2 - 1 study of the outflow sources GL 490, GL 2591, M8E-IR, and W3 IRS 5 , 1992 .

[13]  H. Beuther,et al.  Outflow and Dense Gas Emission from Massive Infrared Dark Clouds , 2007, 0706.3583.

[14]  A. Tielens,et al.  Deuterated Methanol in the Orion Compact Ridge , 1997 .

[15]  L. Tacconi,et al.  Submillimeter observations of CO in the W3 core , 1994 .

[16]  K. Menten,et al.  Massive molecular outflows , 2001, astro-ph/0110372.

[17]  Tomomi Watanabe,et al.  THE DENSE MOLECULAR RIDGE IN NGC 2024 , 2008 .

[18]  M. Reid,et al.  Line Imaging of Orion KL at 865 μm with the Submillimeter Array , 2005, astro-ph/0506603.

[19]  T. Henning,et al.  Star formation and disk properties in Pismis 24 , 2012, 1201.0833.

[20]  T G Phillips,et al.  A Line Survey of Orion KL from 325 to 360 GHz , 1997, The Astrophysical journal. Supplement series.

[21]  C. Wynn-Williams,et al.  Fine Radio Structure in W3 , 1976 .

[22]  R. Klein,et al.  The Formation of Massive Star Systems by Accretion , 2009, Science.

[23]  H. Beuther,et al.  Rotational structure and outflow in the infrared dark cloud 18223-3 , 2009, 0907.2232.

[24]  Richard I. Klein,et al.  Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores , 2006, astro-ph/0609798.

[25]  John E. Carlstrom,et al.  THE RELATIONAL DATABASE AND CALIBRATION SOFTWARE FOR THE CALTECH MILLIMETER ARRAY , 1993 .

[26]  K. Keil,et al.  Protostars and Planets V , 2007 .

[27]  P. Caselli,et al.  Cores to Clusters: Star Formation with Next Generation Telescopes , 2005 .

[28]  R. Neri,et al.  A study of the Keplerian accretion disk and precessing outflow in the massive protostar IRAS 20126+4104 , 2005 .

[29]  R. Neri,et al.  Rotating Disks in High-Mass Young Stellar Objects , 2003, astro-ph/0312495.

[30]  M. Tamura,et al.  Deep Near-Infrared Observations of the W3 Main Star-forming Region , 2004, astro-ph/0403139.

[31]  T. Henning,et al.  Different evolutionary stages in the massive star-forming region S255 complex , 2010, 1011.3575.

[32]  The impact of shocks on the chemistry of molecular clouds High resolution images of chemical differentiation along the NGC 1333-IRAS 2A outflow , 2003, astro-ph/0311132.

[33]  R. Leighton,et al.  Aperture synthesis observations of CO emission from the W3 molecular cloud core , 1984 .

[34]  C. McKee,et al.  A minimum column density of 1 g cm-2 for massive star formation , 2008, Nature.

[35]  T. Wilson,et al.  High-Resolution Continuum Imaging at 1.3 and 0.7 Centimeters of the W3 IRS 5 Region , 2003, astro-ph/0309154.

[36]  J. Mangum,et al.  Formaldehyde as a probe of physical conditions in dense molecular clouds , 1993 .

[37]  E. Churchwell,et al.  Massive stars embedded in molecular clouds - Their population and distribution in the galaxy , 1989 .

[38]  J. Maillard,et al.  Episodic outflows from high-mass protostars , 1991 .

[39]  Magnetic Fields in Shocked Regions: Very Large Array Observations of H2O Masers , 2002 .

[40]  D. E. Bretherton,et al.  The star-forming content of the W3 giant molecular cloud , 2007, 0705.0642.

[41]  Identifying the Outflow Driving Sources in Orion-KL , 2008, 0804.2539.

[42]  M. Wright,et al.  A Multiline Aperture Synthesis Study of Orion-KL , 1996 .

[43]  S. Qin,et al.  A study of high velocity molecular outflows with an up-to-date sample , 2004, astro-ph/0410727.

[44]  Qizhou Zhang,et al.  Dynamical Collapse in W51 Massive Cores: CS (3-2) and CH3CN Observations , 1998 .

[45]  Usa,et al.  A single distance sample of molecular outflows from high-mass young stellar objects , 2001, astro-ph/0108379.

[46]  A. Sarma,et al.  Very Long Baseline Array Observations of the Zeeman Effect in H2O Masers in W3 IRS 5 , 2001 .

[47]  Ralph A. Gaume,et al.  A study of the ground-state hydroxyl maser emission associated with 11 regions of star formation , 1987 .

[48]  N. Evans,et al.  Extremely high velocity outflows. , 1993, astro-ph/9307011.

[49]  S. Molinari,et al.  Search for CO Outflows toward a Sample of 69 High-Mass Protostellar Candidates. II. Outflow Properties , 2005 .

[50]  K. Johnston,et al.  THE W3 IRS 5 CLUSTER : RADIO CONTINUUM AND WATER MASER OBSERVATIONS , 1994 .

[51]  T. Henning,et al.  Chemistry in infrared dark clouds , 2010, 1012.0961.

[52]  H. B. Shepherd Precursors of UchII Regions and the Evolution of Massive Outflows , 2005, astro-ph/0502214.

[53]  M. Campbell,et al.  High-resolution far-infrared observations and radiative-transfer models of W3 IRS 4 and IRS 5 , 1995 .

[54]  Geoffrey A. Blake,et al.  Molecular line survey of Orion A from 215 to 247 GHz , 1985 .

[55]  M. Wright,et al.  MAPS OF 92 GHZ METHYL CYANIDE EMISSION IN ORION-KL , 1994 .

[56]  K. Rice,et al.  Protostars and Planets V , 2005 .

[57]  Heidelberg,et al.  AGE SPREAD IN W3 MAIN: LARGE BINOCULAR TELESCOPE/LUCI NEAR-INFRARED SPECTROSCOPY OF THE MASSIVE STELLAR CONTENT , 2011, 1109.3467.

[58]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[59]  The Distance to the Perseus Spiral Arm in the Milky Way , 2005, Science.

[60]  P. Tuthill,et al.  Subarcsecond mid-infrared and radio observations of the W3 IRS5 protocluster , 2004, astro-ph/0411142.

[61]  Edward Bruce Churchwell,et al.  Ultra-Compact HII Regions and Massive Star Formation , 2002 .

[62]  C. Woodward,et al.  Spitzer Observations of the Giant Molecular Cloud W3 , 2007 .

[63]  A. Gibb,et al.  A survey of SiO 5 -> 4 emission towards outflows from massive young stellar objects , 2007, 0709.3088.

[64]  Qizhou Zhang,et al.  A Rotating Disk around a High-Mass Young Star , 1998 .

[65]  F. Motte,et al.  Erratum: “High-Mass Protostellar Candidates. II. Density Structure from Dust Continuum and CS Emission” (ApJ, 566, 945 [2002]) , 2005 .

[66]  T. Henning,et al.  CIRCUMVENTING THE RADIATION PRESSURE BARRIER IN THE FORMATION OF MASSIVE STARS VIA DISK ACCRETION , 2010, 1008.4516.

[67]  S. Lumsden,et al.  THE RMS SURVEY: THE LUMINOSITY FUNCTIONS AND TIMESCALES OF MASSIVE YOUNG STELLAR OBJECTS AND COMPACT H ii REGIONS , 2011, 1102.4702.

[68]  S. Viti,et al.  Evaporation of ices near massive stars: models based on laboratory temperature programmed desorption data , 2004, astro-ph/0406054.

[69]  Christopher N. Beaumont,et al.  MOLECULAR RINGS AROUND INTERSTELLAR BUBBLES AND THE THICKNESS OF STAR-FORMING CLOUDS , 2009, 0912.1852.

[70]  C. Breuck,et al.  Star formation around RCW 120, the perfect bubble , 2009, 0902.0903.

[71]  A. Walsh,et al.  Star-forming protoclusters associated with methanol masers , 2004 .

[72]  G. Neugebauer,et al.  Infra-Red Sources in the H II Region W3 , 1972 .

[73]  S. Carey,et al.  Ammonia in infrared dark clouds , 2006, astro-ph/0601078.

[74]  E. Bergin,et al.  CHEMICAL DIVERSITY IN HIGH-MASS STAR FORMATION , 2008, 0810.5637.