Self-organization and nanostructural control in thin film heterojunctions.

In spite of more than two-decades of studies of molecular self-assembly, the achievement of low cost, easy-to-implement and multi-parameter bottom-up approaches to address the supramolecular morphology in three-dimensional (3D) systems is still missing. In the particular case of molecular thin films, the 3D nanoscale morphology and function are crucial for both fundamental and applied research. Here we show how it is possible to tune the 3D film structure (domain size, branching, etc.) of thin film heterojunctions with nanoscale accuracy together with the modulation of their optoelectronic properties by employing an easy two-step approach. At first we prepared multi-planar heterojunctions with a programmed sequence of nanoscopic layers. In a second step, thermal stimuli have been employed to induce the formation of bulk heterojunctions with bicontinuous and interdigitated phases having a size below the exciton diffusion length. Importantly, the study of luminescence quenching of these systems can be considered as a useful means for the accurate estimation of the exciton diffusion length of semiconductors in nanoscale blends. Finally, nearly a thousand times lower material consumption than spin coating allows a drastic reduction of material wasting and a low-cost implementation, besides the considerable possibility of preparing thin film blends also by employing materials soluble in different solvents.

[1]  M. Huggins Solutions of Long Chain Compounds , 1941 .

[2]  Gang Li,et al.  Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells , 2009 .

[3]  B. Freeman,et al.  Solid-state NMR molecular dynamics characterization of a highly chlorine-resistant disulfonated poly(arylene ether sulfone) random copolymer blended with poly(ethylene glycol) oligomers for reverse osmosis applications. , 2011, The journal of physical chemistry. B.

[4]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[5]  Fujun Zhang,et al.  Influence of PC60BM or PC70BM as electron acceptor on the performance of polymer solar cells , 2012 .

[6]  Lukas Schmidt-Mende,et al.  Nanostructured Organic and Hybrid Solar Cells , 2011, Advanced materials.

[7]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[8]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[9]  C. Hawker,et al.  Controlling Polymer-Surface Interactions with Random Copolymer Brushes , 1997, Science.

[10]  S. Fabiano,et al.  Engineering 3D ordered molecular thin films by nanoscale control. , 2010, Physical chemistry chemical physics : PCCP.

[11]  R. Friend,et al.  Surface wetting properties of treated indium tin oxide anodes for polymer light-emitting diodes , 2000 .

[12]  F. Biscarini,et al.  Towards all-organic field-effect transistors by additive soft lithography. , 2009, Small.

[13]  Xu-Ming Xie,et al.  Lamellar morphology induced by two-step surface-directed spinodal decomposition in binary polymer mixture films. , 2008, The Journal of chemical physics.

[14]  R. Friend,et al.  High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains. , 2010, Nature materials.

[15]  S. Kassavetis,et al.  Thermal annealing effect on the nanomechanical properties and structure of P3HT:PCBM thin films , 2011 .

[16]  J. Loos,et al.  Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells , 2009 .

[17]  Craig J. Hawker,et al.  Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend , 2011 .

[18]  Isidor Kirshenbaum,et al.  The Vapor Pressure and Heat of Vaporization of N15 , 1941 .

[19]  H. Jaeger,et al.  Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields , 1996, Science.

[20]  M. Nielsen,et al.  Field-effect transistors based on self-organized molecular nanostripes. , 2005, Nano letters.

[21]  V. Schmidt,et al.  Controlling the Morphology and Efficiency of Hybrid ZnO:Polythiophene Solar Cells Via Side Chain Functionalization , 2011 .

[22]  Mool C. Gupta,et al.  Temperature dependence of polymer/fullerene organic solar cells , 2011 .

[23]  Hong-Bo Sun,et al.  Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films. , 2011, Nanoscale.

[24]  B. Mwakikunga,et al.  Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends , 2013, Journal of Materials Science.

[25]  S. Fabiano,et al.  Role of photoactive layer morphology in high fill factor all-polymer bulk heterojunction solar cells , 2011 .

[26]  Mauro Morana,et al.  Exciton diffusion length in narrow bandgap polymers , 2012 .

[27]  O. Ikkala,et al.  Functional Materials Based on Self-Assembly of Polymeric Supramolecules , 2002, Science.

[28]  P. Zambonin,et al.  Poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin films for advanced performance transistors , 2006 .

[29]  B. Pignataro Nanostructured molecular surfaces: advances in investigation and patterning tools , 2009 .

[30]  R. Friend,et al.  Formation of nanopatterned polymer blends in photovoltaic devices. , 2010, Nano letters.

[31]  Vishal Shrotriya,et al.  Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films , 2005 .

[32]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[33]  Forbes T. Brown,et al.  Engineering system dynamics : a unified graph-centered approach , 2006 .

[34]  C. Innocenti,et al.  Additive nanoscale embedding of functional nanoparticles on silicon surface. , 2010, Nanoscale.

[35]  S. Fabiano,et al.  Selecting speed-dependent pathways for a programmable nanoscale texture by wet interfaces. , 2012, Chemical Society reviews.

[36]  O. Inganäs,et al.  Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance , 2009 .

[37]  David S. Ginger,et al.  Controlling film morphology in conjugated polymer:fullerene blends with surface patterning. , 2008, Journal of the American Chemical Society.

[38]  H. Fuchs,et al.  Nanoscopic channel lattices with controlled anisotropic wetting , 2000, Nature.

[39]  S. Sze,et al.  Metal‐Semiconductor Contacts , 2006 .

[40]  C. McNeill,et al.  Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer Blends , 2009 .

[41]  Benjamin J. Leever,et al.  Predicting vertical phase segregation in polymer-fullerene bulk heterojunction solar cells by free energy analysis. , 2013, ACS applied materials & interfaces.

[42]  S. Hüfner,et al.  Photoelectron spectroscopy¿An overview , 2005 .

[43]  B. Hsiao,et al.  Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application. , 2012, ACS applied materials & interfaces.

[44]  P. Topham,et al.  Block copolymer strategies for solar cell technology , 2011 .

[45]  Walter J. Doherty,et al.  Phase-separated thin film structures for efficient polymer blend light-emitting diodes. , 2010, Nano letters.

[46]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[47]  G. Horowitz The organic transistor: state-of-the-art and outlook , 2011 .

[48]  Bruno Pignataro,et al.  Carbon nanotubes and organic solar cells , 2012 .

[49]  Dennis Nordlund,et al.  P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. , 2011, Nano letters.

[50]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[51]  H. Ade,et al.  Confinement-induced miscibility in polymer blends , 1999, Nature.

[52]  Xiaoniu Yang,et al.  Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control , 2007 .

[53]  S. Fabiano,et al.  Organoboron polymers for photovoltaic bulk heterojunctions. , 2010, Macromolecular rapid communications.

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  J. Moon,et al.  Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies. , 2011, Nano letters.

[56]  B. Collins,et al.  Molecular Miscibility of Polymer-Fullerene Blends , 2010 .

[57]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[58]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[59]  Vincenzo Palermo,et al.  Photovoltaic charge generation visualized at the nanoscale: a proof of principle. , 2008, Journal of the American Chemical Society.

[60]  S. Forrest,et al.  Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching , 2009 .

[61]  David S. Germack,et al.  Substrate-dependent interface composition and charge transport in films for organic photovoltaics , 2009 .

[62]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[63]  Richard H Friend,et al.  Probing the morphology and energy landscape of blends of conjugated polymers with sub-10 nm resolution. , 2008, Physical review letters.

[64]  Bruno Pignataro,et al.  Solution processed micro- and nano-bioarrays for multiplexed biosensing. , 2012, Analytical chemistry.

[65]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[66]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[67]  S. Fabiano,et al.  From Monolayer to Multilayer N‐Channel Polymeric Field‐Effect Transistors with Precise Conformational Order , 2012, Advanced materials.

[68]  S. Roth,et al.  Thin films of photoactive polymer blends. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[69]  Maik Bärenklau,et al.  P3HT/PCBM Bulk Heterojunction Solar Cells: Impact of Blend Composition and 3D Morphology on Device Performance , 2010 .

[70]  V. Cimrová,et al.  Surface photovoltage method for evaluation of exciton diffusion length in fluorene–thiophene based copolymers , 2010 .

[71]  D. Hertel,et al.  Exciton diffusion, annihilation and their role in the charge carrier generation in fluorene based copolymers , 2012 .