Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives.
暂无分享,去创建一个
[1] Hejun Du,et al. Analytical and experimental study on a piezoelectric linear motor , 1998 .
[2] P. Dahl. A Solid Friction Model , 1968 .
[3] J K Gimzewski,et al. Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy. , 2007, The Review of scientific instruments.
[4] Norman M. Wereley,et al. Comparison of Piezoelectric, Magnetostrictive and Electrostrictive Hybrid Hydraulic Actuators , 2006 .
[5] Wolfgang Zesch,et al. Multi-degree-of-freedom micropositioning using stepping principles , 1997 .
[6] Takaharu Idogaki,et al. Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.
[7] P. V. Gulyaev,et al. High-accuracy inertial rotation-linear piezoelectric drive , 2010 .
[8] D. W. Pohl,et al. Sawtooth nanometer slider: A versatile low voltage piezoelectric translation device , 1987 .
[9] F. Bordoni,et al. A scanning tunnelling microscope with a piezoelectric-driven inertial slider , 1994 .
[10] Håkan Olin,et al. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion , 2003 .
[11] T. Higuchi,et al. Precise positioning mechanism utilizing rapid deformations of piezoelectric elements , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..
[12] T. Higuchi,et al. Micro impact drive mechanisms using optically excited thermal expansion , 1997 .
[13] Christopher Niezrecki,et al. Piezoelectric actuation: State of the art , 2001 .
[14] Mathias Göken,et al. Scanning tunneling microscopy in UHV with an X,Y,Z micropositioner , 1994 .
[15] James Friend,et al. Surface acoustic wave solid-state rotational micromotor , 2012 .
[16] T. Hack. Experiments with a new piezoelectric rotary actuator , 1998, Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165).
[17] Carlos Canudas de Wit,et al. A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..
[18] Toshiro Higuchi,et al. Application of Electromagnetic Impulsive Force to Precise Positioning , 1987 .
[19] Rolf Möller,et al. A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures , 1996 .
[20] D. Croft,et al. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .
[21] H. Güntherodt,et al. Piezoelectric inertial stepping motor with spherical rotor , 1992 .
[22] Matthias Hunstig,et al. Konzeption, Ansteuerung und Eigenschaften schneller piezoelektrischer Trägheitsmotoren , 2014 .
[23] William R. Silveira,et al. A vertical inertial coarse approach for variable temperature scanned probe microscopy , 2003 .
[24] Kee-Joe Lim,et al. Fabrication and characteristics of impact type ultrasonic motor , 2007 .
[25] T. Higuchi,et al. Miniature spherical motor using iron–gallium alloy (Galfenol) , 2009 .
[26] Kenji Uchino,et al. Piezoelectric Actuators and Ultrasonic Motors , 1996 .
[27] D. Polla,et al. A linear piezoelectric stepper motor with submicrometer step size and centimeter travel range , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[28] Yutaka Yamagata,et al. Improvement of Velocity of Impact Drive Mechanism by Controlling Friction. , 1992 .
[29] Meiling Zhu. Contact analysis and mathematical modeling of traveling wave ultrasonic motors , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[30] Walter Sextro,et al. High-velocity operation of piezoelectric inertia motors: experimental validation , 2016 .
[31] Hongwei Zhao,et al. Design and experimental performances of a piezoelectric linear actuator by means of lateral motion , 2015 .
[32] N. S. Murali,et al. Effect of friction on the performance of inertial slider , 2008 .
[33] S. Gwo,et al. A new high‐resolution two‐dimensional micropositioning device for scanning probe microscopy applications , 1994 .
[34] M. A Parameswaran,et al. Vibratory conveying—analysis and design: A review , 1979 .
[35] Naotake Mohri,et al. Effect of lubrication on impact drive mechanism , 1998 .
[36] Toshiiku Sashida,et al. An Introduction to Ultrasonic Motors , 1994 .
[37] Tobias Hemsel,et al. Drive Signals for Maximizing the Velocity of Piezoelectric Inertia Motors , 2010 .
[38] Musa Jouaneh,et al. Modeling hysteresis in piezoceramic actuators , 1995 .
[39] K. Uchino,et al. Piezoelectric Motors and Transformers , 2008 .
[40] S. S. Aphale,et al. High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties , 2008, Nanotechnology.
[41] Håkan Olin,et al. A compact inertial slider STM , 1997 .
[42] Jian Wang,et al. A review of long range piezoelectric motors using frequency leveraged method , 2015 .
[43] M. Switkes,et al. Simple retrofittable long‐range x–y translation system for scanned probe microscopes , 1996 .
[44] Walter Driesen,et al. Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle , 2008 .
[45] Vincent Hayward,et al. Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..
[46] Chong-Yun Kang,et al. A novel tiny ultrasonic linear motor using the radial mode of a bimorph , 2006 .
[47] ブス ハイコ,et al. The driving device , 2002 .
[48] Toshiro Higuchi,et al. Magnetostrictive actuating device utilizing impact forces coupled with friction forces , 2010, 2010 IEEE International Symposium on Industrial Electronics.
[49] Manfred H. Jericho,et al. A vertical/horizontal two‐dimensional piezoelectric driven inertial slider micropositioner for cryogenic applications , 1992 .
[50] Oystein Fischer,et al. A vertical piezoelectric inertial slider , 1990 .
[51] Еппе Бастольм. A linear actuator , 2007 .
[52] Tien-Fu Lu,et al. A digital charge amplifier for hysteresis elimination in piezoelectric actuators , 2013 .
[53] S. Devasia,et al. Precision tracking of driving wave forms for inertial reaction devices , 2005 .
[54] S·彼得连科,et al. The piezoelectric motor , 2009 .
[55] Walter Sextro,et al. Improving the Performance of Piezoelectric Inertia Motors , 2010 .
[56] Xinliang Zhang,et al. A hybrid model for rate-dependent hysteresis in piezoelectric actuators , 2010 .
[57] M. Kurosawa,et al. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[58] S. O. Reza Moheimani,et al. Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, CDC 2005.
[59] Walter Sextro,et al. Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: Ideal excitation , 2013 .
[60] Walter Sextro,et al. An efficient simulation technique for high-frequency piezoelectric inertia motors , 2012, 2012 IEEE International Ultrasonics Symposium.
[61] Karl Spanner,et al. Piezoelectric Motors, an Overview , 2016 .
[62] 吉田 龍一,et al. 超小型圧電アクチュエータ(SIDM)の開発 , 2004 .
[63] Ramiro Velazquez,et al. Characterization of a Piezoelectric Ultrasonic Linear Motor for Braille Displays , 2009, 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA).
[64] 進 坂野,et al. 三極円筒型圧電素子を用いたX-Y-θ微動テーブル , 1996 .
[65] F. Altpeter. Friction modeling, identification and compensation , 1999 .
[66] J. Garbini,et al. The design and control of a three-dimensional piezoceramic tube scanner with an inertial slider , 2006 .
[67] Peter Urs Frei,et al. Theory, design and implementation of a novel vibratory conveyor , 2002 .
[68] Yung Ting,et al. Controller design for high-frequency cutting using a piezo-driven microstage , 2011 .
[69] K. Spanner,et al. Survey of the Various Operating Principles of Ultrasonic Piezomotors , 2006 .
[70] Manfred H. Jericho,et al. Simple two-dimensional piezoelectric micropositioner for a scanning tunneling microscope , 1990 .
[71] N. Kawahara,et al. Multi-layered piezoelectric bimorph actuator , 1997, 1997 International Symposium on Micromechanics and Human Science (Cat. No.97TH8311).
[72] Hiroshi Hosaka,et al. Resonant-Type Smooth Impact Drive Mechanism Actuator with Two Langevin Transducers , 2012, Adv. Robotics.
[73] Reymond Clavel,et al. Stick and slip actuators (SSA) , 2000, SPIE Optics East.
[74] 윤성일,et al. small piezoelectric or electrostrictive linear motor , 2004 .
[75] Shao-Kang Hung,et al. The design and characteristic research of a dual-mode inertia motor , 2011, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).
[76] Yue Cao,et al. Variable Temperature Scanning Tunneling Microscope study on CDW material 2H-TaSe$_2$ , 2011 .
[77] Kyung-Soo Kim,et al. A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system. , 2011, The Review of scientific instruments.
[78] Rodolfo Rabe,et al. Compact test platform for in-situ indentation and scratching inside a scanning electron microscope (SEM) , 2006 .
[79] Josep Samitier,et al. From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.
[80] A. Bergander,et al. Energy consumption of piezoelectric actuators for inertial drives , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).
[81] J. R. Greene,et al. A simple dynamic piezoelectric X‐Y translation stage suitable for scanning probe microscopes , 1993 .
[82] D. Pohl. Dynamic piezoelectric translation devices , 1987 .
[83] Hiroshi Hosaka,et al. Resonant-Type Smooth Impact Drive Mechanism Actuator Operating at Lower Input Voltages , 2013 .
[84] Eric Krotkov,et al. Impulsive manipulation , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.
[85] B Graffel,et al. Feedforward correction of nonlinearities in piezoelectric scanner constructions and its experimental verification. , 2007, The Review of scientific instruments.
[86] Klaus Kuhnen,et al. Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren , 2001 .
[87] Yves Berthier,et al. Stick-slip in stepping piezoelectric Inertia Drive Motors – Mechanism impact on a rubbing contact , 2016 .
[88] Frank Claeyssen,et al. Improvement of Linear and Rotative Stepping Piezo Actuators Using Design and Control , 2012 .
[89] Dong-Heon Kang. Modeling of the piezoelectric-driven stick-slip actuators , 2007 .
[90] 龍一 吉田,et al. スムーズインパクト駆動機構(SIDM)の開発(第2報) , 2002 .
[91] Walter Fox Smith,et al. A scanning tunneling microscope/scanning electron microscope system for the fabrication of nanostructures , 1991 .
[92] Hiroshi Hosaka,et al. A miniaturized resonant-type smooth impact drive mechanism actuator , 2012 .
[93] H. Janocha,et al. FPGA-Based Compensator of Hysteretic Actuator Nonlinearities for Highly Dynamic Applications , 2008, IEEE/ASME Transactions on Mechatronics.
[94] Robert W. Carpick,et al. Microparticle manipulation using inertial forces , 2005 .
[95] Christoph Edeler. Measurements and Potential Applications of Force-Control Method for Stick-Slip-Driven Nanohandling Robots , 2011 .
[96] Toshiro Higuchi,et al. Development of Automatic Micromanipulation System for Biological Cell Sorter , 1998 .
[97] Valentin L. Popov,et al. Modeling of the dynamic contact in stick-slip microdrives using the method of reduction of dimensionality , 2012 .
[98] Seok-Jin Yoon,et al. Analysis of driving mechanism for tiny piezoelectric linear motor , 2006 .
[99] Tien-Ming Chuang,et al. Compact variable-temperature scanning force microscope. , 2007, The Review of scientific instruments.
[100] Sergej Fatikow,et al. Driving principles of mobile microrobots for micro- and nanohandling , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).
[101] Qingyou Lu,et al. How are the behaviors of piezoelectric inertial sliders interpreted? , 2012, The Review of scientific instruments.
[102] Scott Jordan,et al. Nanopositioning : Keeping Pace , 2007 .
[103] Ryuichi Yoshida,et al. Ultracompact optical zoom lens for mobile phone , 2007, Electronic Imaging.
[104] T. Royston,et al. Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control , 1999, Adaptive Structures and Material Systems.
[105] Kenji Uchino,et al. Resonant-type inertial impact motor with rectangular pulse drive , 2016 .
[106] Shyr-Long Jeng,et al. Motion behavior of triangular waveform excitation input in an operating impact drive mechanism , 2011 .
[107] Yasuhiro Okamoto,et al. Development of linear actuators using piezoelectric elements , 1998 .
[108] M. Pak,et al. Load-velocity Characteristics of a Stick-slip Piezo Actuator , 2012 .
[109] P. Niedermann,et al. Simple piezoelectric translation device , 1988 .
[110] A. Bergander,et al. Development of Miniature Manipulators for Applications in Biology and Nanotechnologies , 2003 .
[111] S. Reymond,et al. Low temperature scanning contact potentiometry , 2004 .
[112] A. M. Baró,et al. Scanning tunneling microscopy/scanning electron microscopy combined instrument , 1994 .
[113] Ben S. Cazzolato,et al. A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators , 2010 .
[114] Tobias Hemsel. Untersuchung und Weiterentwicklung linearer piezoelektrischer Schwingungsantriebe , 2001 .
[115] Takeshi Morita,et al. Miniature piezoelectric motors , 2003 .
[116] Toshiro Higuchi,et al. Micro robot arm utilizing rapid deformations of piezoelectric elements , 1991, Adv. Robotics.
[117] Dongwoo Song,et al. Modeling of piezo actuator’s nonlinear and frequency dependent dynamics , 1999 .
[118] Hiroshi Hosaka,et al. Resonance frequency ratio control with an additional inductor for a miniaturized resonant-type SIDM actuator , 2014 .
[119] B Drevniok,et al. Methods and instrumentation for piezoelectric motors. , 2012, The Review of scientific instruments.
[120] R. Letty,et al. Amplified Piezoelectric Actuators: Static & Dynamic Applications , 2007 .
[121] Russell M. Taylor,et al. Thermally actuated untethered impact-driven locomotive microdevices , 2006 .
[122] R. Erlandsson,et al. A three‐axis micropositioner for ultrahigh vacuum use based on the inertial slider principle , 1996 .
[123] Alain Delchambre,et al. Design and performances of a one-degree-of-freedom guided nano-actuator , 2003 .
[124] Zdeněk Hurák,et al. Hybrid charge control for stick–slip piezoelectric actuators , 2011 .
[125] Jean-Pol Vigneron,et al. Vertical two‐dimensional piezoelectric inertial slider for scanning tunneling microscope , 1993 .
[126] U. Wagner,et al. Nichtlineare Effekte bei Piezokeramiken unter schwachem elektrischem Feld: Experimentelle Untersuchung und Modellbildung , 2003 .
[127] S. H. Chang,et al. A high resolution long travel friction-drive micropositioner with programmable step size , 1999 .
[128] Dominiek Reynaerts,et al. Piezomotors: an enabling technology , 2009 .
[129] T. Hemsel,et al. Survey of the present state of the art of piezoelectric linear motors , 2000, Ultrasonics.
[130] Sergej Fatikow,et al. Mikroroboter und Mikromontage , 2000 .
[131] R. Neumann,et al. A tunneling atomic force microscope with inertial tip‐to‐sensor approach , 1991 .
[132] Hewon Jung,et al. Creep characteristics of piezoelectric actuators , 2000 .
[133] Walter Sextro,et al. Modelling the friction contact in an inertia motor , 2013 .
[134] Seok-Jin Yoon,et al. Multilayer piezoelectric linear ultrasonic motor for camera module , 2009 .
[135] V. Popov,et al. Influence of Ultrasonic Oscillation on Static and Sliding Friction , 2012, Tribology Letters.
[136] Giancarlo Corradini,et al. A modular actuator system for miniature positioning systems , 2008 .
[137] S. Ueha,et al. Ultrasonic motors : theory and applications , 1993 .
[138] Sergej Fatikow,et al. Automatic nanohandling station inside a scanning electron microscope , 2008 .
[139] V. Shrikanth,et al. Frictional force measurement during stick-slip motion of a piezoelectric walker , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).
[140] Pinkuan Liu,et al. An in-pipe micro robot actuated by piezoelectric bimorphs , 2009 .
[141] Sergej Fatikow,et al. Simulation and Measurements of Stick-Slip-Microdrives for Nanorobots , 2010 .
[142] 龍一 吉田,et al. スムーズインパクト駆動機構(SIDM)の開発 , 1999 .
[143] G. N. Weisensel,et al. Cryogenic magnetostrictive transducers and devices for commercial, military, and space applications , 1998, Smart Structures.
[144] Frank Claeyssen,et al. Stepping Piezoelectric Actuators Based on APAs , 2008 .
[145] Long Cheng,et al. Modeling and control of piezoelectric inertia–friction actuators: review and future research directions , 2015 .
[146] Xiong Biao Chen,et al. On the Dynamics of Piezoelectric-Driven Stick-Slip Actuator , 2008 .
[147] Sergej Fatikow,et al. Open Loop Force Control of Piezo-Actuated Stick-Slip Drives , 2011, Int. J. Intell. Mechatronics Robotics.
[148] Frank Claeyssen,et al. Benefits from Amplification of Piezo Actuation in Inertial Stepping Motors and application for High-performance Linear Micro Motors , 2010 .
[149] Jun Ni,et al. Development of a piezoelectric multi-axis stage based on stick-and-clamping actuation technology , 2007 .
[150] H. Kaizuka,et al. A Simple Way to Reduce Hysteresis and Creep When Using Piezoelectric Actuators , 1988 .
[151] Jean-Marc Breguet. Actionneurs "stick and slip" pour micro-manipulateurs , 1998 .
[152] W. Driesen,et al. Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science , 2007, 2007 International Conference on Mechatronics and Automation.
[153] Minoru Kurosawa,et al. High speed, high resolution ultrasonic linear motor using V-shape two bolt-clamped Langevin-type transducers , 2009 .
[154] Sergio Pellegrino,et al. Inertial Stick-Slip Actuator for Active Control of Shape and Vibration , 1997 .
[155] A. Miyake,et al. Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[156] K. Nakamura,et al. Experimental verification and modeling of high-efficiency operation in lubricated ultrasonic motors , 2012, 2012 IEEE International Ultrasonics Symposium.
[157] T. Morita,et al. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer. , 2012, Ultrasonics.
[158] Zhigang Yang,et al. Impact drive rotary precision actuator with piezoelectric bimorphs , 2008 .
[159] K. Ikuta,et al. Tiny silent linear cybernetic actuator driven by piezoelectric device with electromagnetic clamp , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.
[160] Tzong-Shi Liu,et al. The Study of a Dual-Disk Type Piezoelectric Actuator , 2013 .
[161] Bergander,et al. Micropositioners for microscopy applications and microbiology based on piezoelectric actuators , 2002 .
[162] James Friend,et al. A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics , 2010 .
[163] Roland Büchi. Modellierung und Regelung von Impact Drives für Positionierungen im Nanometerbereich , 1996 .
[164] Branislav Borovac,et al. A platform for micropositioning based on piezo legs , 2001 .
[165] Sergej Fatikow,et al. Modeling of stick-slip micro-drives , 2011 .
[166] Dalius Mazeika,et al. Linear inertial piezoelectric motor with bimorph disc , 2013 .
[167] Khaled Karrai,et al. Slip-stick step-scanner for scanning probe microscopy , 2005 .
[168] T. Higuchi,et al. Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements , 1990 .
[169] H. van Kempen,et al. Low-temperature scanning tunneling microscope for use on artificially fabricated nanostructures , 1994 .
[170] Arvid Bergander. Control, wear testing & integration of stick-slip micropositioning , 2004 .
[171] Takeshi Morita,et al. Resonant-type smooth impact drive mechanism actuator using lead-free piezoelectric material , 2018 .
[172] C. Newcomb,et al. Improving the linearity of piezoelectric ceramic actuators , 1982 .
[173] Rong-Fong Fung,et al. Hysteresis identification and dynamic responses of the impact drive mechanism , 2005 .
[174] Tomáš Šikola,et al. Experimental optimization of power-function-shaped drive pulse for stick-slip piezo actuators , 2015 .
[175] Seok-Jin Yoon,et al. Analysis of Tiny Piezoelectric Ultrasonic Linear Motor , 2006 .
[176] A. Bergander,et al. A testing mechanism and testing procedure for materials in inertial drives , 2002, Proceedings of 2002 International Symposium on Micromechatronics and Human Science.
[177] Michael Goldfarb,et al. A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .
[178] Kenji Uchino,et al. Design of Translation Rotary Ultrasonic Motor with Slanted Piezoelectric Ceramics , 2011 .
[179] P. Lutz,et al. Development, Modeling, and Control of a Micro-/Nanopositioning 2-DOF Stick–Slip Device , 2009, IEEE/ASME Transactions on Mechatronics.
[180] N. Agraït,et al. Vertical inertial piezoelectric translation device for a scanning tunneling microscope , 1992 .
[181] J.A. De Abreu-Garcia,et al. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.
[182] Chih-Liang Chu,et al. A novel long-travel piezoelectric-driven linear nanopositioning stage , 2006 .
[183] Takeshi Morita,et al. Wireguide driving actuator using resonant-type smooth impact drive mechanism , 2015 .
[184] Hwan-Sik Yoon,et al. Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control , 2012 .
[185] Zhonghua Zhang,et al. A new inertial piezoelectric rotary actuator based on changing the normal pressure , 2013 .
[186] Beverley J. Inkson,et al. A miniaturized TEM nanoindenter for studying material deformation in situ , 2006 .
[187] Naotake Mohri,et al. Self-running type electrical discharge machine using impact drive mechanism , 1997, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[188] Darya Amin-Shahidi,et al. Improved charge amplifier using hybrid hysteresis compensation. , 2013, The Review of scientific instruments.
[189] R. Matsuda,et al. Micro-step XY-stage using piezoelectric tube actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.
[190] Arthur G. Erdman,et al. Silicon fabricated submicrometer stepper motor for microsurgical procedures , 2002 .
[191] 高橋 雅矢,et al. Inertial drive actuator , 2012 .
[192] Kenji Uchino,et al. Single Source Hybrid Drive for Multi-Functional Ultrasonic Motor , 2014 .
[193] Yoshihiro Nomura,et al. Development of inertia driven micro robot with nano tilting stage for SEM operation , 2007 .
[194] Walter Sextro,et al. Stick-slip and slip-slip operation of piezoelectric inertia drives—Part II: Frequency-limited excitation , 2013 .
[195] Yves Berthier,et al. Design of a Dynamic Tribometer Applied to Piezoelectric Inertia Drive Motors - In Situ Exploration of Stick-Slip Principle - , 2016 .
[196] J Y Peng,et al. Modeling of Piezoelectric-Driven Stick–Slip Actuators , 2011, IEEE/ASME Transactions on Mechatronics.
[197] Ahmet Oral,et al. A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids , 2005 .
[198] Marc G. Millis Millis,et al. Responding to Mechanical Antigravity , 2006 .
[199] Sehun Kim,et al. Scanning tunneling microscope with novel coarse sample positioning technique , 1991 .
[200] J. Röning,et al. Probe based manipulation and assembly of nanowires into organized mesostructures , 2008, Nanotechnology.
[201] Jörg Wallaschek,et al. Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations , 2001 .
[202] H. Van der Wulp. Piezo-driven stages for nanopositioning with extreme stability : theoretical acpects and practical design considerations , 1997 .
[203] Joseph W. Lyding,et al. Inertial tip translator for a scanning tunneling microscope , 1993 .
[204] Christoph Edeler,et al. Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für nanorobotische Anwendungen , 2011 .
[205] C. Heiden,et al. Simple micropositioning devices for STM , 1987 .
[206] Xiaohui Lu,et al. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction. , 2016, The Review of scientific instruments.
[207] Seok-Jin Yoon,et al. Constructions and characteristics of a tiny piezoelectric linear motor using radial mode vibrations , 2006 .
[208] C. A. Lindensmith,et al. Cryogenic Magnetostrictive Actuators: Materials and Applications , 1998 .
[209] Hiroshi Hosaka,et al. Improvement of miniaturized resonant type SIDM actuator , 2012, 2012 IEEE International Ultrasonics Symposium.
[210] A. Bergander,et al. Performance improvements for stick-slip positioners , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).
[211] Chris Pearson,et al. A compact micropositioner for use in ultrahigh vacuum , 1993 .
[212] Wenjun Zhang,et al. Piezoelectric friction–inertia actuator—a critical review and future perspective , 2012 .
[213] Mark E. Welland,et al. A one-dimensional piezoelectric-driven inertial micropositioner with vertical capabilities , 1993 .
[214] Q. Zhang,et al. Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces , 2012 .
[215] R. Bansevicius,et al. Multi-degree-of-freedom ultrasonic motors for mass-consumer devices , 2008 .