Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives.

Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives.

[1]  Hejun Du,et al.  Analytical and experimental study on a piezoelectric linear motor , 1998 .

[2]  P. Dahl A Solid Friction Model , 1968 .

[3]  J K Gimzewski,et al.  Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy. , 2007, The Review of scientific instruments.

[4]  Norman M. Wereley,et al.  Comparison of Piezoelectric, Magnetostrictive and Electrostrictive Hybrid Hydraulic Actuators , 2006 .

[5]  Wolfgang Zesch,et al.  Multi-degree-of-freedom micropositioning using stepping principles , 1997 .

[6]  Takaharu Idogaki,et al.  Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[7]  P. V. Gulyaev,et al.  High-accuracy inertial rotation-linear piezoelectric drive , 2010 .

[8]  D. W. Pohl,et al.  Sawtooth nanometer slider: A versatile low voltage piezoelectric translation device , 1987 .

[9]  F. Bordoni,et al.  A scanning tunnelling microscope with a piezoelectric-driven inertial slider , 1994 .

[10]  Håkan Olin,et al.  Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion , 2003 .

[11]  T. Higuchi,et al.  Precise positioning mechanism utilizing rapid deformations of piezoelectric elements , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[12]  T. Higuchi,et al.  Micro impact drive mechanisms using optically excited thermal expansion , 1997 .

[13]  Christopher Niezrecki,et al.  Piezoelectric actuation: State of the art , 2001 .

[14]  Mathias Göken,et al.  Scanning tunneling microscopy in UHV with an X,Y,Z micropositioner , 1994 .

[15]  James Friend,et al.  Surface acoustic wave solid-state rotational micromotor , 2012 .

[16]  T. Hack Experiments with a new piezoelectric rotary actuator , 1998, Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165).

[17]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[18]  Toshiro Higuchi,et al.  Application of Electromagnetic Impulsive Force to Precise Positioning , 1987 .

[19]  Rolf Möller,et al.  A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures , 1996 .

[20]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[21]  H. Güntherodt,et al.  Piezoelectric inertial stepping motor with spherical rotor , 1992 .

[22]  Matthias Hunstig,et al.  Konzeption, Ansteuerung und Eigenschaften schneller piezoelektrischer Trägheitsmotoren , 2014 .

[23]  William R. Silveira,et al.  A vertical inertial coarse approach for variable temperature scanned probe microscopy , 2003 .

[24]  Kee-Joe Lim,et al.  Fabrication and characteristics of impact type ultrasonic motor , 2007 .

[25]  T. Higuchi,et al.  Miniature spherical motor using iron–gallium alloy (Galfenol) , 2009 .

[26]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[27]  D. Polla,et al.  A linear piezoelectric stepper motor with submicrometer step size and centimeter travel range , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  Yutaka Yamagata,et al.  Improvement of Velocity of Impact Drive Mechanism by Controlling Friction. , 1992 .

[29]  Meiling Zhu Contact analysis and mathematical modeling of traveling wave ultrasonic motors , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Walter Sextro,et al.  High-velocity operation of piezoelectric inertia motors: experimental validation , 2016 .

[31]  Hongwei Zhao,et al.  Design and experimental performances of a piezoelectric linear actuator by means of lateral motion , 2015 .

[32]  N. S. Murali,et al.  Effect of friction on the performance of inertial slider , 2008 .

[33]  S. Gwo,et al.  A new high‐resolution two‐dimensional micropositioning device for scanning probe microscopy applications , 1994 .

[34]  M. A Parameswaran,et al.  Vibratory conveying—analysis and design: A review , 1979 .

[35]  Naotake Mohri,et al.  Effect of lubrication on impact drive mechanism , 1998 .

[36]  Toshiiku Sashida,et al.  An Introduction to Ultrasonic Motors , 1994 .

[37]  Tobias Hemsel,et al.  Drive Signals for Maximizing the Velocity of Piezoelectric Inertia Motors , 2010 .

[38]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[39]  K. Uchino,et al.  Piezoelectric Motors and Transformers , 2008 .

[40]  S. S. Aphale,et al.  High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties , 2008, Nanotechnology.

[41]  Håkan Olin,et al.  A compact inertial slider STM , 1997 .

[42]  Jian Wang,et al.  A review of long range piezoelectric motors using frequency leveraged method , 2015 .

[43]  M. Switkes,et al.  Simple retrofittable long‐range x–y translation system for scanned probe microscopes , 1996 .

[44]  Walter Driesen,et al.  Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle , 2008 .

[45]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[46]  Chong-Yun Kang,et al.  A novel tiny ultrasonic linear motor using the radial mode of a bimorph , 2006 .

[47]  ブス ハイコ,et al.  The driving device , 2002 .

[48]  Toshiro Higuchi,et al.  Magnetostrictive actuating device utilizing impact forces coupled with friction forces , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[49]  Manfred H. Jericho,et al.  A vertical/horizontal two‐dimensional piezoelectric driven inertial slider micropositioner for cryogenic applications , 1992 .

[50]  Oystein Fischer,et al.  A vertical piezoelectric inertial slider , 1990 .

[51]  Еппе Бастольм A linear actuator , 2007 .

[52]  Tien-Fu Lu,et al.  A digital charge amplifier for hysteresis elimination in piezoelectric actuators , 2013 .

[53]  S. Devasia,et al.  Precision tracking of driving wave forms for inertial reaction devices , 2005 .

[54]  S·彼得连科,et al.  The piezoelectric motor , 2009 .

[55]  Walter Sextro,et al.  Improving the Performance of Piezoelectric Inertia Motors , 2010 .

[56]  Xinliang Zhang,et al.  A hybrid model for rate-dependent hysteresis in piezoelectric actuators , 2010 .

[57]  M. Kurosawa,et al.  A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[58]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, CDC 2005.

[59]  Walter Sextro,et al.  Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: Ideal excitation , 2013 .

[60]  Walter Sextro,et al.  An efficient simulation technique for high-frequency piezoelectric inertia motors , 2012, 2012 IEEE International Ultrasonics Symposium.

[61]  Karl Spanner,et al.  Piezoelectric Motors, an Overview , 2016 .

[62]  吉田 龍一,et al.  超小型圧電アクチュエータ(SIDM)の開発 , 2004 .

[63]  Ramiro Velazquez,et al.  Characterization of a Piezoelectric Ultrasonic Linear Motor for Braille Displays , 2009, 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA).

[64]  進 坂野,et al.  三極円筒型圧電素子を用いたX-Y-θ微動テーブル , 1996 .

[65]  F. Altpeter Friction modeling, identification and compensation , 1999 .

[66]  J. Garbini,et al.  The design and control of a three-dimensional piezoceramic tube scanner with an inertial slider , 2006 .

[67]  Peter Urs Frei,et al.  Theory, design and implementation of a novel vibratory conveyor , 2002 .

[68]  Yung Ting,et al.  Controller design for high-frequency cutting using a piezo-driven microstage , 2011 .

[69]  K. Spanner,et al.  Survey of the Various Operating Principles of Ultrasonic Piezomotors , 2006 .

[70]  Manfred H. Jericho,et al.  Simple two-dimensional piezoelectric micropositioner for a scanning tunneling microscope , 1990 .

[71]  N. Kawahara,et al.  Multi-layered piezoelectric bimorph actuator , 1997, 1997 International Symposium on Micromechanics and Human Science (Cat. No.97TH8311).

[72]  Hiroshi Hosaka,et al.  Resonant-Type Smooth Impact Drive Mechanism Actuator with Two Langevin Transducers , 2012, Adv. Robotics.

[73]  Reymond Clavel,et al.  Stick and slip actuators (SSA) , 2000, SPIE Optics East.

[74]  윤성일,et al.  small piezoelectric or electrostrictive linear motor , 2004 .

[75]  Shao-Kang Hung,et al.  The design and characteristic research of a dual-mode inertia motor , 2011, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[76]  Yue Cao,et al.  Variable Temperature Scanning Tunneling Microscope study on CDW material 2H-TaSe$_2$ , 2011 .

[77]  Kyung-Soo Kim,et al.  A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system. , 2011, The Review of scientific instruments.

[78]  Rodolfo Rabe,et al.  Compact test platform for in-situ indentation and scratching inside a scanning electron microscope (SEM) , 2006 .

[79]  Josep Samitier,et al.  From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.

[80]  A. Bergander,et al.  Energy consumption of piezoelectric actuators for inertial drives , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[81]  J. R. Greene,et al.  A simple dynamic piezoelectric X‐Y translation stage suitable for scanning probe microscopes , 1993 .

[82]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[83]  Hiroshi Hosaka,et al.  Resonant-Type Smooth Impact Drive Mechanism Actuator Operating at Lower Input Voltages , 2013 .

[84]  Eric Krotkov,et al.  Impulsive manipulation , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[85]  B Graffel,et al.  Feedforward correction of nonlinearities in piezoelectric scanner constructions and its experimental verification. , 2007, The Review of scientific instruments.

[86]  Klaus Kuhnen,et al.  Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren , 2001 .

[87]  Yves Berthier,et al.  Stick-slip in stepping piezoelectric Inertia Drive Motors – Mechanism impact on a rubbing contact , 2016 .

[88]  Frank Claeyssen,et al.  Improvement of Linear and Rotative Stepping Piezo Actuators Using Design and Control , 2012 .

[89]  Dong-Heon Kang Modeling of the piezoelectric-driven stick-slip actuators , 2007 .

[90]  龍一 吉田,et al.  スムーズインパクト駆動機構(SIDM)の開発(第2報) , 2002 .

[91]  Walter Fox Smith,et al.  A scanning tunneling microscope/scanning electron microscope system for the fabrication of nanostructures , 1991 .

[92]  Hiroshi Hosaka,et al.  A miniaturized resonant-type smooth impact drive mechanism actuator , 2012 .

[93]  H. Janocha,et al.  FPGA-Based Compensator of Hysteretic Actuator Nonlinearities for Highly Dynamic Applications , 2008, IEEE/ASME Transactions on Mechatronics.

[94]  Robert W. Carpick,et al.  Microparticle manipulation using inertial forces , 2005 .

[95]  Christoph Edeler Measurements and Potential Applications of Force-Control Method for Stick-Slip-Driven Nanohandling Robots , 2011 .

[96]  Toshiro Higuchi,et al.  Development of Automatic Micromanipulation System for Biological Cell Sorter , 1998 .

[97]  Valentin L. Popov,et al.  Modeling of the dynamic contact in stick-slip microdrives using the method of reduction of dimensionality , 2012 .

[98]  Seok-Jin Yoon,et al.  Analysis of driving mechanism for tiny piezoelectric linear motor , 2006 .

[99]  Tien-Ming Chuang,et al.  Compact variable-temperature scanning force microscope. , 2007, The Review of scientific instruments.

[100]  Sergej Fatikow,et al.  Driving principles of mobile microrobots for micro- and nanohandling , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[101]  Qingyou Lu,et al.  How are the behaviors of piezoelectric inertial sliders interpreted? , 2012, The Review of scientific instruments.

[102]  Scott Jordan,et al.  Nanopositioning : Keeping Pace , 2007 .

[103]  Ryuichi Yoshida,et al.  Ultracompact optical zoom lens for mobile phone , 2007, Electronic Imaging.

[104]  T. Royston,et al.  Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control , 1999, Adaptive Structures and Material Systems.

[105]  Kenji Uchino,et al.  Resonant-type inertial impact motor with rectangular pulse drive , 2016 .

[106]  Shyr-Long Jeng,et al.  Motion behavior of triangular waveform excitation input in an operating impact drive mechanism , 2011 .

[107]  Yasuhiro Okamoto,et al.  Development of linear actuators using piezoelectric elements , 1998 .

[108]  M. Pak,et al.  Load-velocity Characteristics of a Stick-slip Piezo Actuator , 2012 .

[109]  P. Niedermann,et al.  Simple piezoelectric translation device , 1988 .

[110]  A. Bergander,et al.  Development of Miniature Manipulators for Applications in Biology and Nanotechnologies , 2003 .

[111]  S. Reymond,et al.  Low temperature scanning contact potentiometry , 2004 .

[112]  A. M. Baró,et al.  Scanning tunneling microscopy/scanning electron microscopy combined instrument , 1994 .

[113]  Ben S. Cazzolato,et al.  A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators , 2010 .

[114]  Tobias Hemsel Untersuchung und Weiterentwicklung linearer piezoelektrischer Schwingungsantriebe , 2001 .

[115]  Takeshi Morita,et al.  Miniature piezoelectric motors , 2003 .

[116]  Toshiro Higuchi,et al.  Micro robot arm utilizing rapid deformations of piezoelectric elements , 1991, Adv. Robotics.

[117]  Dongwoo Song,et al.  Modeling of piezo actuator’s nonlinear and frequency dependent dynamics , 1999 .

[118]  Hiroshi Hosaka,et al.  Resonance frequency ratio control with an additional inductor for a miniaturized resonant-type SIDM actuator , 2014 .

[119]  B Drevniok,et al.  Methods and instrumentation for piezoelectric motors. , 2012, The Review of scientific instruments.

[120]  R. Letty,et al.  Amplified Piezoelectric Actuators: Static & Dynamic Applications , 2007 .

[121]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[122]  R. Erlandsson,et al.  A three‐axis micropositioner for ultrahigh vacuum use based on the inertial slider principle , 1996 .

[123]  Alain Delchambre,et al.  Design and performances of a one-degree-of-freedom guided nano-actuator , 2003 .

[124]  Zdeněk Hurák,et al.  Hybrid charge control for stick–slip piezoelectric actuators , 2011 .

[125]  Jean-Pol Vigneron,et al.  Vertical two‐dimensional piezoelectric inertial slider for scanning tunneling microscope , 1993 .

[126]  U. Wagner,et al.  Nichtlineare Effekte bei Piezokeramiken unter schwachem elektrischem Feld: Experimentelle Untersuchung und Modellbildung , 2003 .

[127]  S. H. Chang,et al.  A high resolution long travel friction-drive micropositioner with programmable step size , 1999 .

[128]  Dominiek Reynaerts,et al.  Piezomotors: an enabling technology , 2009 .

[129]  T. Hemsel,et al.  Survey of the present state of the art of piezoelectric linear motors , 2000, Ultrasonics.

[130]  Sergej Fatikow,et al.  Mikroroboter und Mikromontage , 2000 .

[131]  R. Neumann,et al.  A tunneling atomic force microscope with inertial tip‐to‐sensor approach , 1991 .

[132]  Hewon Jung,et al.  Creep characteristics of piezoelectric actuators , 2000 .

[133]  Walter Sextro,et al.  Modelling the friction contact in an inertia motor , 2013 .

[134]  Seok-Jin Yoon,et al.  Multilayer piezoelectric linear ultrasonic motor for camera module , 2009 .

[135]  V. Popov,et al.  Influence of Ultrasonic Oscillation on Static and Sliding Friction , 2012, Tribology Letters.

[136]  Giancarlo Corradini,et al.  A modular actuator system for miniature positioning systems , 2008 .

[137]  S. Ueha,et al.  Ultrasonic motors : theory and applications , 1993 .

[138]  Sergej Fatikow,et al.  Automatic nanohandling station inside a scanning electron microscope , 2008 .

[139]  V. Shrikanth,et al.  Frictional force measurement during stick-slip motion of a piezoelectric walker , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).

[140]  Pinkuan Liu,et al.  An in-pipe micro robot actuated by piezoelectric bimorphs , 2009 .

[141]  Sergej Fatikow,et al.  Simulation and Measurements of Stick-Slip-Microdrives for Nanorobots , 2010 .

[142]  龍一 吉田,et al.  スムーズインパクト駆動機構(SIDM)の開発 , 1999 .

[143]  G. N. Weisensel,et al.  Cryogenic magnetostrictive transducers and devices for commercial, military, and space applications , 1998, Smart Structures.

[144]  Frank Claeyssen,et al.  Stepping Piezoelectric Actuators Based on APAs , 2008 .

[145]  Long Cheng,et al.  Modeling and control of piezoelectric inertia–friction actuators: review and future research directions , 2015 .

[146]  Xiong Biao Chen,et al.  On the Dynamics of Piezoelectric-Driven Stick-Slip Actuator , 2008 .

[147]  Sergej Fatikow,et al.  Open Loop Force Control of Piezo-Actuated Stick-Slip Drives , 2011, Int. J. Intell. Mechatronics Robotics.

[148]  Frank Claeyssen,et al.  Benefits from Amplification of Piezo Actuation in Inertial Stepping Motors and application for High-performance Linear Micro Motors , 2010 .

[149]  Jun Ni,et al.  Development of a piezoelectric multi-axis stage based on stick-and-clamping actuation technology , 2007 .

[150]  H. Kaizuka,et al.  A Simple Way to Reduce Hysteresis and Creep When Using Piezoelectric Actuators , 1988 .

[151]  Jean-Marc Breguet Actionneurs "stick and slip" pour micro-manipulateurs , 1998 .

[152]  W. Driesen,et al.  Applications of Piezo-Actuated Micro-Robots in Micro-Biology and Material Science , 2007, 2007 International Conference on Mechatronics and Automation.

[153]  Minoru Kurosawa,et al.  High speed, high resolution ultrasonic linear motor using V-shape two bolt-clamped Langevin-type transducers , 2009 .

[154]  Sergio Pellegrino,et al.  Inertial Stick-Slip Actuator for Active Control of Shape and Vibration , 1997 .

[155]  A. Miyake,et al.  Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[156]  K. Nakamura,et al.  Experimental verification and modeling of high-efficiency operation in lubricated ultrasonic motors , 2012, 2012 IEEE International Ultrasonics Symposium.

[157]  T. Morita,et al.  Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer. , 2012, Ultrasonics.

[158]  Zhigang Yang,et al.  Impact drive rotary precision actuator with piezoelectric bimorphs , 2008 .

[159]  K. Ikuta,et al.  Tiny silent linear cybernetic actuator driven by piezoelectric device with electromagnetic clamp , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[160]  Tzong-Shi Liu,et al.  The Study of a Dual-Disk Type Piezoelectric Actuator , 2013 .

[161]  Bergander,et al.  Micropositioners for microscopy applications and microbiology based on piezoelectric actuators , 2002 .

[162]  James Friend,et al.  A brief review of actuation at the micro-scale using electrostatics, electromagnetics and piezoelectric ultrasonics , 2010 .

[163]  Roland Büchi Modellierung und Regelung von Impact Drives für Positionierungen im Nanometerbereich , 1996 .

[164]  Branislav Borovac,et al.  A platform for micropositioning based on piezo legs , 2001 .

[165]  Sergej Fatikow,et al.  Modeling of stick-slip micro-drives , 2011 .

[166]  Dalius Mazeika,et al.  Linear inertial piezoelectric motor with bimorph disc , 2013 .

[167]  Khaled Karrai,et al.  Slip-stick step-scanner for scanning probe microscopy , 2005 .

[168]  T. Higuchi,et al.  Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements , 1990 .

[169]  H. van Kempen,et al.  Low-temperature scanning tunneling microscope for use on artificially fabricated nanostructures , 1994 .

[170]  Arvid Bergander Control, wear testing & integration of stick-slip micropositioning , 2004 .

[171]  Takeshi Morita,et al.  Resonant-type smooth impact drive mechanism actuator using lead-free piezoelectric material , 2018 .

[172]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[173]  Rong-Fong Fung,et al.  Hysteresis identification and dynamic responses of the impact drive mechanism , 2005 .

[174]  Tomáš Šikola,et al.  Experimental optimization of power-function-shaped drive pulse for stick-slip piezo actuators , 2015 .

[175]  Seok-Jin Yoon,et al.  Analysis of Tiny Piezoelectric Ultrasonic Linear Motor , 2006 .

[176]  A. Bergander,et al.  A testing mechanism and testing procedure for materials in inertial drives , 2002, Proceedings of 2002 International Symposium on Micromechatronics and Human Science.

[177]  Michael Goldfarb,et al.  A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .

[178]  Kenji Uchino,et al.  Design of Translation Rotary Ultrasonic Motor with Slanted Piezoelectric Ceramics , 2011 .

[179]  P. Lutz,et al.  Development, Modeling, and Control of a Micro-/Nanopositioning 2-DOF Stick–Slip Device , 2009, IEEE/ASME Transactions on Mechatronics.

[180]  N. Agraït,et al.  Vertical inertial piezoelectric translation device for a scanning tunneling microscope , 1992 .

[181]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[182]  Chih-Liang Chu,et al.  A novel long-travel piezoelectric-driven linear nanopositioning stage , 2006 .

[183]  Takeshi Morita,et al.  Wireguide driving actuator using resonant-type smooth impact drive mechanism , 2015 .

[184]  Hwan-Sik Yoon,et al.  Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control , 2012 .

[185]  Zhonghua Zhang,et al.  A new inertial piezoelectric rotary actuator based on changing the normal pressure , 2013 .

[186]  Beverley J. Inkson,et al.  A miniaturized TEM nanoindenter for studying material deformation in situ , 2006 .

[187]  Naotake Mohri,et al.  Self-running type electrical discharge machine using impact drive mechanism , 1997, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[188]  Darya Amin-Shahidi,et al.  Improved charge amplifier using hybrid hysteresis compensation. , 2013, The Review of scientific instruments.

[189]  R. Matsuda,et al.  Micro-step XY-stage using piezoelectric tube actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[190]  Arthur G. Erdman,et al.  Silicon fabricated submicrometer stepper motor for microsurgical procedures , 2002 .

[191]  高橋 雅矢,et al.  Inertial drive actuator , 2012 .

[192]  Kenji Uchino,et al.  Single Source Hybrid Drive for Multi-Functional Ultrasonic Motor , 2014 .

[193]  Yoshihiro Nomura,et al.  Development of inertia driven micro robot with nano tilting stage for SEM operation , 2007 .

[194]  Walter Sextro,et al.  Stick-slip and slip-slip operation of piezoelectric inertia drives—Part II: Frequency-limited excitation , 2013 .

[195]  Yves Berthier,et al.  Design of a Dynamic Tribometer Applied to Piezoelectric Inertia Drive Motors - In Situ Exploration of Stick-Slip Principle - , 2016 .

[196]  J Y Peng,et al.  Modeling of Piezoelectric-Driven Stick–Slip Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[197]  Ahmet Oral,et al.  A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids , 2005 .

[198]  Marc G. Millis Millis,et al.  Responding to Mechanical Antigravity , 2006 .

[199]  Sehun Kim,et al.  Scanning tunneling microscope with novel coarse sample positioning technique , 1991 .

[200]  J. Röning,et al.  Probe based manipulation and assembly of nanowires into organized mesostructures , 2008, Nanotechnology.

[201]  Jörg Wallaschek,et al.  Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations , 2001 .

[202]  H. Van der Wulp Piezo-driven stages for nanopositioning with extreme stability : theoretical acpects and practical design considerations , 1997 .

[203]  Joseph W. Lyding,et al.  Inertial tip translator for a scanning tunneling microscope , 1993 .

[204]  Christoph Edeler,et al.  Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für nanorobotische Anwendungen , 2011 .

[205]  C. Heiden,et al.  Simple micropositioning devices for STM , 1987 .

[206]  Xiaohui Lu,et al.  Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction. , 2016, The Review of scientific instruments.

[207]  Seok-Jin Yoon,et al.  Constructions and characteristics of a tiny piezoelectric linear motor using radial mode vibrations , 2006 .

[208]  C. A. Lindensmith,et al.  Cryogenic Magnetostrictive Actuators: Materials and Applications , 1998 .

[209]  Hiroshi Hosaka,et al.  Improvement of miniaturized resonant type SIDM actuator , 2012, 2012 IEEE International Ultrasonics Symposium.

[210]  A. Bergander,et al.  Performance improvements for stick-slip positioners , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[211]  Chris Pearson,et al.  A compact micropositioner for use in ultrahigh vacuum , 1993 .

[212]  Wenjun Zhang,et al.  Piezoelectric friction–inertia actuator—a critical review and future perspective , 2012 .

[213]  Mark E. Welland,et al.  A one-dimensional piezoelectric-driven inertial micropositioner with vertical capabilities , 1993 .

[214]  Q. Zhang,et al.  Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces , 2012 .

[215]  R. Bansevicius,et al.  Multi-degree-of-freedom ultrasonic motors for mass-consumer devices , 2008 .