Scaling limits of external multi-particle DLA on the plane and the supercooled Stefan problem
暂无分享,去创建一个
Xiling Zhang | Sergey Nadtochiy | Mykhaylo Shkolnikov | Mykhaylo Shkolnikov | S. Nadtochiy | Xiling Zhang
[1] B. Pittel. On growing random binary trees , 1984 .
[2] Sam Howison,et al. Singularity development in moving-boundary problems , 1985 .
[3] K. Kassner. Pattern formation in diffusion-limited crystal growth , 1996 .
[4] Small-Particle Limits in a Regularized Laplacian Random Growth Model , 2013, 1309.2194.
[5] L. Sander. Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .
[6] J. Gall,et al. Some properties of planar brownian motion , 1992 .
[7] Nitakshi Goyal,et al. General Topology-I , 2017 .
[8] Xie Weiqing,et al. The Stefan problem with kinetic condition at the free boundary , 1990 .
[9] G. Taylor,et al. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[10] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[11] V. Sidoravicius,et al. A problem in one-dimensional diffusion-limited aggregation (DLA) and positive recurrence of Markov chains , 2008, 0809.4175.
[12] A. Dembo,et al. Criticality of a Randomly-Driven Front , 2017, Archive for Rational Mechanics and Analysis.
[13] R. Cooke. Real and Complex Analysis , 2011 .
[14] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[15] Laplacian growth and diffusion limited aggregation: different universality classes. , 2001, Physical review letters.
[16] Antonio Fasano,et al. A critical case for the solvability of stefan‐like problems , 1983 .
[17] P. Meakin. Multiparticle diffusion-limited aggregation with strip geometry , 1988 .
[18] V. Sidoravicius,et al. Multi-particle diffusion limited aggregation , 2016, Inventiones mathematicae.
[19] M. B. Hastings,et al. Laplacian growth as one-dimensional turbulence , 1998 .
[20] Ward Whitt,et al. An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .
[21] Marcel Brillouin. Sur quelques problèmes non résolus de la Physique Mathématique classique Propagation de la fusion , 1930 .
[22] A. Sznitman. Topics in propagation of chaos , 1991 .
[23] Robin Pemantle,et al. Diffusion-limited aggregation on a tree , 1997 .
[24] P. Meakin. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation , 1983 .
[25] Sergey Nadtochiy,et al. Global solutions to the supercooled Stefan problem with blow-ups: regularity and uniqueness , 2019, Probability and Mathematical Physics.
[26] Christa Cuchiero,et al. Propagation of minimality in the supercooled Stefan problem , 2020, 2010.03580.
[27] J. Stefan,et al. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere , 1891 .
[28] Tamás Vicsek,et al. Pattern Formation in Diffusion-Limited Aggregation , 1984 .
[29] Vittoria Silvestri. Fluctuation results for Hastings–Levitov planar growth , 2015, 1506.04728.
[30] J. Stefan,et al. Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion , 1890 .
[31] H. Kunita. Stochastic integrals , 2019, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance.
[32] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[33] Miguel A. Herrero,et al. Singularity formation in the one-dimensional supercooled Stefan problem , 1996, European Journal of Applied Mathematics.
[34] Mykhaylo Shkolnikov,et al. Particle systems with singular interaction through hitting times: Application in systemic risk modeling , 2017, The Annals of Applied Probability.
[35] Sean Ledger,et al. At the mercy of the common noise: blow-ups in a conditional McKean–Vlasov Problem , 2018, Electronic Journal of Probability.
[36] J. Norris,et al. Hastings–Levitov Aggregation in the Small-Particle Limit , 2011, 1106.3546.
[37] Diffusion Limited Aggregation on a Cylinder , 2007, math/0701201.
[38] Richard F. Voss,et al. Multiparticle fractal aggregation , 1984 .
[39] H. B. Rosenstock,et al. Erratum: Cluster formation in two-dimensional random walks: Application to photolysis of silver halides , 1980 .
[41] L. Carleson,et al. Aggregation in the Plane and Loewner's Equation , 2001 .
[42] H. Kesten. Upper bounds for the growth rate of DLA , 1990 .
[43] Luc Devroye,et al. A note on the height of binary search trees , 1986, JACM.
[44] Daniel Platt,et al. Diffusion Limited Aggregation , 1995 .
[45] H. Kesten. How long are the arms in DLA , 1987 .
[46] F. Delarue,et al. Particle systems with a singular mean-field self-excitation. Application to neuronal networks , 2014, 1406.1151.
[47] Diffusion-limited aggregation on the hyperbolic plane , 2013, 1306.3129.
[48] Avner Friedman,et al. The ill-posed Hele-Shaw model and the Stefan problem for supercooled water , 1984 .
[49] G. Swindle,et al. Hydrodynamic limits for one-dimensional particle systems with moving boundaries , 1996 .
[50] D. Aldous,et al. A diffusion limit for a class of randomly-growing binary trees , 1988 .
[51] J. Stefan. Über die Theorie der Eisbildung , 1890 .
[52] S'ebastien Martineau. Directed Diffusion-Limited Aggregation , 2014, 1411.3667.
[53] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[54] École d'été de probabilités de Saint-Flour,et al. Ecole d'Ete de Probabilites de Saint-Flour XX - 1990 , 1992 .
[55] Inwon C. Kim,et al. Viscosity Solutions for the Two-Phase Stefan Problem , 2010, 1010.4285.
[56] B. Sherman. A general one-phase Stefan problem , 1970 .