Scaling limits of external multi-particle DLA on the plane and the supercooled Stefan problem

We consider (a variant of) the external multi-particle diffusion-limited aggregation (MDLA) process of Rosenstock and Marquardt on the plane. Based on the recent findings of [11], [10] in one space dimension it is natural to conjecture that the scaling limit of the growing aggregate in such a model is given by the growing solid phase in a suitable “probabilistic” formulation of the single-phase supercooled Stefan problem for the heat equation. To address this conjecture, we extend the probabilistic formulation from [10] to multiple space dimensions. We then show that the equation that characterizes the growth rate of the solid phase in the supercooled Stefan problem is satisfied by the scaling limit of the external MDLA process with an inequality, which can be strict in general. In the course of the proof, we establish two additional results interesting in their own right: (i) the stability of a “crossing property” of planar Brownian motion and (ii) a rigorous connection between the probabilistic solutions to the supercooled Stefan problem and its classical and weak solutions.

[1]  B. Pittel On growing random binary trees , 1984 .

[2]  Sam Howison,et al.  Singularity development in moving-boundary problems , 1985 .

[3]  K. Kassner Pattern formation in diffusion-limited crystal growth , 1996 .

[4]  Small-Particle Limits in a Regularized Laplacian Random Growth Model , 2013, 1309.2194.

[5]  L. Sander Diffusion-limited aggregation: A kinetic critical phenomenon? , 2000 .

[6]  J. Gall,et al.  Some properties of planar brownian motion , 1992 .

[7]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[8]  Xie Weiqing,et al.  The Stefan problem with kinetic condition at the free boundary , 1990 .

[9]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[11]  V. Sidoravicius,et al.  A problem in one-dimensional diffusion-limited aggregation (DLA) and positive recurrence of Markov chains , 2008, 0809.4175.

[12]  A. Dembo,et al.  Criticality of a Randomly-Driven Front , 2017, Archive for Rational Mechanics and Analysis.

[13]  R. Cooke Real and Complex Analysis , 2011 .

[14]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[15]  Laplacian growth and diffusion limited aggregation: different universality classes. , 2001, Physical review letters.

[16]  Antonio Fasano,et al.  A critical case for the solvability of stefan‐like problems , 1983 .

[17]  P. Meakin Multiparticle diffusion-limited aggregation with strip geometry , 1988 .

[18]  V. Sidoravicius,et al.  Multi-particle diffusion limited aggregation , 2016, Inventiones mathematicae.

[19]  M. B. Hastings,et al.  Laplacian growth as one-dimensional turbulence , 1998 .

[20]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[21]  Marcel Brillouin Sur quelques problèmes non résolus de la Physique Mathématique classique Propagation de la fusion , 1930 .

[22]  A. Sznitman Topics in propagation of chaos , 1991 .

[23]  Robin Pemantle,et al.  Diffusion-limited aggregation on a tree , 1997 .

[24]  P. Meakin Formation of fractal clusters and networks by irreversible diffusion-limited aggregation , 1983 .

[25]  Sergey Nadtochiy,et al.  Global solutions to the supercooled Stefan problem with blow-ups: regularity and uniqueness , 2019, Probability and Mathematical Physics.

[26]  Christa Cuchiero,et al.  Propagation of minimality in the supercooled Stefan problem , 2020, 2010.03580.

[27]  J. Stefan,et al.  Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere , 1891 .

[28]  Tamás Vicsek,et al.  Pattern Formation in Diffusion-Limited Aggregation , 1984 .

[29]  Vittoria Silvestri Fluctuation results for Hastings–Levitov planar growth , 2015, 1506.04728.

[30]  J. Stefan,et al.  Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion , 1890 .

[31]  H. Kunita Stochastic integrals , 2019, Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance.

[32]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[33]  Miguel A. Herrero,et al.  Singularity formation in the one-dimensional supercooled Stefan problem , 1996, European Journal of Applied Mathematics.

[34]  Mykhaylo Shkolnikov,et al.  Particle systems with singular interaction through hitting times: Application in systemic risk modeling , 2017, The Annals of Applied Probability.

[35]  Sean Ledger,et al.  At the mercy of the common noise: blow-ups in a conditional McKean–Vlasov Problem , 2018, Electronic Journal of Probability.

[36]  J. Norris,et al.  Hastings–Levitov Aggregation in the Small-Particle Limit , 2011, 1106.3546.

[37]  Diffusion Limited Aggregation on a Cylinder , 2007, math/0701201.

[38]  Richard F. Voss,et al.  Multiparticle fractal aggregation , 1984 .

[39]  H. B. Rosenstock,et al.  Erratum: Cluster formation in two-dimensional random walks: Application to photolysis of silver halides , 1980 .

[41]  L. Carleson,et al.  Aggregation in the Plane and Loewner's Equation , 2001 .

[42]  H. Kesten Upper bounds for the growth rate of DLA , 1990 .

[43]  Luc Devroye,et al.  A note on the height of binary search trees , 1986, JACM.

[44]  Daniel Platt,et al.  Diffusion Limited Aggregation , 1995 .

[45]  H. Kesten How long are the arms in DLA , 1987 .

[46]  F. Delarue,et al.  Particle systems with a singular mean-field self-excitation. Application to neuronal networks , 2014, 1406.1151.

[47]  Diffusion-limited aggregation on the hyperbolic plane , 2013, 1306.3129.

[48]  Avner Friedman,et al.  The ill-posed Hele-Shaw model and the Stefan problem for supercooled water , 1984 .

[49]  G. Swindle,et al.  Hydrodynamic limits for one-dimensional particle systems with moving boundaries , 1996 .

[50]  D. Aldous,et al.  A diffusion limit for a class of randomly-growing binary trees , 1988 .

[51]  J. Stefan Über die Theorie der Eisbildung , 1890 .

[52]  S'ebastien Martineau Directed Diffusion-Limited Aggregation , 2014, 1411.3667.

[53]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[54]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'Ete de Probabilites de Saint-Flour XX - 1990 , 1992 .

[55]  Inwon C. Kim,et al.  Viscosity Solutions for the Two-Phase Stefan Problem , 2010, 1010.4285.

[56]  B. Sherman A general one-phase Stefan problem , 1970 .