UV and Hα HST Observations of Six GASP Jellyfish Galaxies

Star-forming, Hα-emitting clumps are found embedded in the gaseous tails of galaxies undergoing intense ram pressure stripping in galaxy clusters, so-called jellyfish galaxies. These clumps offer a unique opportunity to study star formation under extreme conditions, in the absence of an underlying disk and embedded within the hot intracluster medium. Yet, a comprehensive, high-spatial-resolution study of these systems is missing. We obtained UVIS/Hubble Space Telescope (HST) data to observe the first statistical sample of clumps in the tails and disks of six jellyfish galaxies from the GASP survey; we used a combination of broadband (UV to I) filters and a narrowband Hα filter. HST observations are needed to study the sizes, stellar masses, and ages of the clumps and their clustering hierarchy. These observations will be used to study the clump scaling relations and the universality of the star formation process, and to verify whether a disk is irrelevant, as hinted at by results from jellyfish galaxies. This paper presents the observations, data reduction strategy, and some general results based on the preliminary data analysis. The high spatial resolution of UVIS gives an unprecedentedly sharp view of the complex structure of the inner regions of the galaxies and of the substructures in the galaxy disks. We found clear signatures of stripping in regions very close in projection to the galactic disk. The star-forming regions in the stripped tails are extremely bright and compact and we did not detect a significant number of star-forming clumps in regions where MUSE did not detect any. The paper finally presents the development plan for the project.

[1]  Brent Tan,et al.  Cloudy with A Chance of Rain: Accretion Braking of Cold Clouds , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  M. Radovich,et al.  Ultraviolet imaging observations of three jellyfish galaxies: star formation suppression in the centre and ongoing star formation in stripped tails , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  I. Roberts,et al.  Walk on the Low Side: LOFAR Explores the Low-frequency Radio Emission of GASP Jellyfish Galaxies , 2022, The Astrophysical Journal.

[4]  M. Radovich,et al.  Post-starburst Galaxies in the Centers of Intermediate-redshift Clusters , 2022, The Astrophysical Journal.

[5]  M. Meneghetti,et al.  Exploring the physical properties of lensed star-forming clumps at 2 ≲ z ≲ 6 , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  J. Devriendt,et al.  Simulating Jellyfish Galaxies: A Case Study for a Gas-rich Dwarf Galaxy , 2022, The Astrophysical Journal.

[7]  M. Radovich,et al.  Exploring the AGN–Ram Pressure Stripping Connection in Local Clusters , 2021, The Astrophysical Journal.

[8]  M. Radovich,et al.  GASP XXXVIII: The LOFAR-MeerKAT-VLA View on the Nonthermal Side of a Jellyfish Galaxy , 2021, The Astrophysical Journal.

[9]  G. Bryan,et al.  A Simple Model for Mixing and Cooling in Cloud–Wind Interactions , 2021, The Astrophysical Journal.

[10]  M. Radovich,et al.  GASP XXXV: Characteristics of the Diffuse Ionised Gas in Gas-stripped Galaxies , 2021, The Astrophysical Journal.

[11]  M. Radovich,et al.  GASP XXXIV: Unfolding the Thermal Side of Ram Pressure Stripping in the Jellyfish Galaxy JO201 , 2021, The Astrophysical Journal.

[12]  G. Gavazzi,et al.  A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) , 2020, Astronomy & Astrophysics.

[13]  G. Gavazzi,et al.  A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) , 2018, Astronomy & Astrophysics.

[14]  J. Fritz,et al.  GASP. XXXII. Measuring the Diffuse Ionized Gas Fraction in Ram-pressure-stripped Galaxies , 2020, 2011.08869.

[15]  P. Serra,et al.  Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206 , 2020, 2009.13287.

[16]  M. Karovska,et al.  Spatially Resolved BPT Mapping of Nearby Seyfert 2 Galaxies , 2020, 2009.02368.

[17]  S. Tonnesen,et al.  GASP XXX. The Spatially Resolved SFR–Mass Relation in Stripping Galaxies in the Local Universe , 2020, The Astrophysical Journal.

[18]  M. Radovich,et al.  GASP. XXI. Star Formation Rates in the Tails of Galaxies Undergoing Ram Pressure Stripping , 2020, The Astrophysical Journal.

[19]  M. Radovich,et al.  The High Molecular Gas Content, and the Efficient Conversion of Neutral into Molecular Gas, in Jellyfish Galaxies , 2020, The Astrophysical Journal.

[20]  K. Thorat,et al.  GASP XXVI. HI Gas in Jellyfish Galaxies: The case of JO201 and JO206 , 2020, 2006.11543.

[21]  M. Verheijen,et al.  GASP XXV: neutral hydrogen gas in the striking jellyfish galaxy JO204 , 2020, 2004.04754.

[22]  S. Veilleux,et al.  Ionized outflows in local luminous AGN: what are the real densities and outflow rates? , 2020, Monthly Notices of the Royal Astronomical Society.

[23]  A. Biviano,et al.  GASP XXIV. The History of Abruptly Quenched Galaxies in Clusters , 2020, The Astrophysical Journal.

[24]  M. Radovich,et al.  GASP. XXII. The Molecular Gas Content of the JW100 Jellyfish Galaxy at z ∼ 0.05: Does Ram Pressure Promote Molecular Gas Formation? , 2019, The Astrophysical Journal.

[25]  A. Biviano,et al.  GASP XXIII: A Jellyfish Galaxy as an Astrophysical Laboratory of the Baryonic Cycle , 2019, The Astrophysical Journal.

[26]  F. Bournaud,et al.  A contribution of star-forming clumps and accreting satellites to the mass assembly of z ∼ 2 galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  J. Bridge,et al.  Star-forming clumps in the Lyman Alpha Reference Sample of galaxies – I. Photometric analysis and clumpiness , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  K. Thorat,et al.  GASP – XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation , 2019, Monthly Notices of the Royal Astronomical Society.

[29]  S. Sivanandam,et al.  ALMA Unveils Widespread Molecular Gas Clumps in the Ram Pressure Stripped Tail of the Norma Jellyfish Galaxy , 2019, The Astrophysical Journal.

[30]  M. Radovich,et al.  GASP – XIX. AGN and their outflows at the centre of jellyfish galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  B. Groves,et al.  The SAMI Galaxy Survey: Quenching of Star Formation in Clusters I. Transition Galaxies , 2019, The Astrophysical Journal.

[32]  M. Yagi,et al.  Spectacular Hubble Space Telescope Observations of the Coma Galaxy D100 and Star Formation in Its Ram Pressure–stripped Tail , 2018, The Astrophysical Journal.

[33]  M. Radovich,et al.  GASP XIII. Star formation in gas outside galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  G. Fasano,et al.  Enhanced Star Formation in Both Disks and Ram-pressure-stripped Tails of GASP Jellyfish Galaxies , 2018, The Astrophysical Journal.

[35]  S. Oh,et al.  The growth and entrainment of cold gas in a hot wind , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[36]  G. Fasano,et al.  UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85 , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  G. Fasano,et al.  GASP – X. APEX observations of molecular gas in the discs and in the tails of ram-pressure stripped galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[38]  A. Biviano,et al.  GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters , 2018, 1802.07297.

[39]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[40]  S. Ravindranath,et al.  Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 ≤ z < 3 , 2017, 1712.01858.

[41]  J. Richard,et al.  The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake , 2017, Nature Astronomy.

[42]  A. Biviano,et al.  GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204 , 2017, 1708.09035.

[43]  G. Gavazzi,et al.  MUSE sneaks a peek at extreme ram-pressure events - III. Tomography of UGC 6697, a massive galaxy falling into Abell 1367 , 2017, 1707.06241.

[44]  A. Biviano,et al.  GASP. I. Gas Stripping Phenomena in Galaxies with MUSE , 2017, 1704.05086.

[45]  A. Biviano,et al.  GASP. III. JO36: A Case of Multiple Environmental Effects at Play? , 2017, 1704.05088.

[46]  D. Fisher,et al.  DYNAMO-HST survey: clumps in nearby massive turbulent discs and the effects of clump clustering on kiloparsec scale measurements of clumps , 2016, 1608.08241.

[47]  G. Gavazzi,et al.  MUSE sneaks a peek at extreme ram-pressure stripping events. II. The physical properties of the gas tail of ESO137-001 , 2015, 1510.04283.

[48]  Caltech,et al.  LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THE HUBBLE SPACE TELESCOPE. I. SURVEY DESCRIPTION , 2014, 1410.7456.

[49]  C. Lintott,et al.  HST IMAGING OF FADING AGN CANDIDATES. I. HOST-GALAXY PROPERTIES AND ORIGIN OF THE EXTENDED GAS , 2014, 1408.5159.

[50]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[51]  H. Ebeling,et al.  Star formation in shocked cluster spirals and their tails , 2014, 1405.1033.

[52]  M. Dopita,et al.  ACCESS- V. dissecting ram-pressure stripping through integral-field spectroscopy and multiband imaging , 2012, 1211.6532.

[53]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[54]  G. Bryan,et al.  Star formation in ram pressure stripped galactic tails , 2012, 1203.0308.

[55]  C. Blake,et al.  Scaling relations of star-forming regions: from kpc-sized clumps to H ii regions , 2012, 1203.0309.

[56]  J. Lucey,et al.  Ultraviolet tails and trails in cluster galaxies: a sample of candidate gaseous stripping events in Coma , 2010, 1006.4867.

[57]  S. Schindler,et al.  The effect of ram pressure on the star formation, mass distribution and morphology of galaxies , 2009, 0903.3818.

[58]  S. Ravindranath,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007, astro-ph/0701121.

[59]  R. Koopmann,et al.  The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 Hα MORPHOLOGIES AND ENVIRONMENTAL EFFECTS IN VIRGO CLUSTER SPIRAL GALAXIES , 2002 .

[60]  A. Fruchter,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[61]  P. Storey,et al.  Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .

[62]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[63]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .