Construction of a virtual lunar environment platform

Abstract Many of the world's powerful and wealthy nations, including China, have devoted both large amounts of funding and considerable promotion to lunar research and exploration. The launch of Chinese Chang'e-1 satellite and the construction of the scientific observation data platform created a favourable opportunity for research into the lunar geometrical, physical and chemical environment. Based on this background, a Wide Area Network (WAN) based virtual lunar environment was constructed for observation data sharing and further exploration. The systematic architecture and framework were introduced and then strategies of mass data (e.g. lunar digital elevation model, lunar digital orthophoto map and typical thematic lunar data) organisation, integration, management and scheduling were then set up to achieve the 3D visualisation of typical lunar geomorphic features. Furthermore, the integration method of 3D lunar data and the process model of impact craters were studied; thus, the whole lunar and celestial collision process could be dynamically simulated. The results indicate that the WAN-based virtual lunar platform can be used effectively for public information sharing, scientific exploration and further to promote the development of deep space exploration in China.

[1]  Gary Priestnall,et al.  Virtual Geographic Environments , 2012, GIScience 2012.

[2]  Z. Liu,et al.  Digital Earth: decadal experiences and some thoughts , 2010, Int. J. Digit. Earth.

[3]  F. W. Klein,et al.  Multiple asperity model for earthquake prediction , 1981, Nature.

[4]  D.G. Bell,et al.  NASA World Wind: Opensource GIS for Mission Operations , 2007, 2007 IEEE Aerospace Conference.

[5]  Zhong Zhou,et al.  A Layered Iterative Load Balancing Algorithm for Distributed Virtual Environment: A Layered Iterative Load Balancing Algorithm for Distributed Virtual Environment , 2008 .

[6]  Eh. M. Galimov Exploration and utilization of the Moon. Proceedings. Third International Conference on the Exploration and Utilization of the Moon, Moskva (Russia), 10 - 14 Oct 1998. , 1999 .

[7]  R. L. Kirk,et al.  CARTOGRAPHY FOR LUNAR EXPLORATION : 2008 STATUS AND MISSION PLANS , 2008 .

[8]  Enrico Gobbetti,et al.  Technical strategies for massive model visualization , 2008, SPM '08.

[9]  Jinsong Bao,et al.  A Virtual Simulation Environment for Lunar Rover: Framework and Key Technologies , 2008 .

[10]  A. J. Cable,et al.  High-velocity impact phenomena , 1970 .

[11]  Erik Reinhard,et al.  Review: Real-Time Rendering, 2nd edition Tomas Akenine-Möller, Eric Haines Real-Time Rendering, 2nd edition , 2004 .

[12]  Chunlai Li,et al.  China's Lunar Exploration Program: Present and future , 2008 .

[13]  Vladimir V. Shuvalov,et al.  Numerical simulation of the LCROSS impact experiment , 2008 .

[14]  B. Harvey Soviet and Russian Lunar Exploration , 2006 .

[15]  Debbie Denise Reese,et al.  MoonWorld: Implementation of Virtual Lunar Exploration , 2010 .

[16]  Christopher J. Migdal,et al.  The clipmap: a virtual mipmap , 1998, SIGGRAPH.

[17]  Siyka Zlatanova,et al.  Large-scale 3D Data Integration : Challenges and Opportunities , 2005 .

[18]  N. Artemieva,et al.  Numerical modeling of Tunguska-like impacts , 2002 .

[19]  Jianfeng Cao,et al.  Lunar topographic model CLTM-s01 from Chang’E-1 laser altimeter , 2009 .

[20]  M. Nafi Toksöz,et al.  Internal constitution and evolution of the moon , 1973 .

[21]  Enrico Gobbetti,et al.  Massive-Model Rendering Techniques: A Tutorial , 2007, IEEE Computer Graphics and Applications.

[22]  Hui Lin,et al.  Virtual Geographic Environments , 2009 .

[23]  Michael Batty Virtual Geographic Environments: a primer , 2011 .

[24]  Lan Chaozhen,et al.  LUNAR GEOMORPHY 3D VISUALIZATION METHOD , 2009 .

[25]  R. T. Sedgwick,et al.  Numerical investigations in penetration mechanics , 1978 .

[26]  Richard J. Pike,et al.  Depth/diameter relations of fresh lunar craters: Revision from spacecraft data , 1974 .

[27]  Clark R. Chapman,et al.  Secondary craters on Europa and implications for cratered surfaces , 2005, Nature.

[28]  Robert Seamans Project Apollo: The Tough Decisions , 2005 .

[29]  Timothy W. Foresman,et al.  Evolution and implementation of the Digital Earth vision, technology and society , 2008, Int. J. Digit. Earth.

[30]  William David Compton Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions , 1989 .

[31]  Debbie Denise Reese,et al.  MoonWorld: Virtual Fieldwork in Second Life , 2009 .

[32]  Hui Lin,et al.  A grid-based collaborative virtual geographic environment for the planning of silt dam systems , 2010, Int. J. Geogr. Inf. Sci..

[33]  Yasuharu Kunii,et al.  Scientific exploration of lunar surface using a rover in Japanese future lunar mission , 2002 .

[34]  C. Wang,et al.  A digital earth prototype system: DEPS/CAS , 2009, Int. J. Digit. Earth.

[35]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .

[36]  Wei Zuo,et al.  The global image of the Moon obtained by the Chang’E-1: Data processing and lunar cartography , 2010 .

[37]  Uwe Schwiegelshohn,et al.  New Challenges of Parallel Job Scheduling , 2007, JSSPP.

[38]  Yutaka Takano,et al.  The SELENE project and Japanese future lunar exploration , 2005 .

[39]  Chunlai Li,et al.  CAS-1 lunar soil simulant , 2009 .

[40]  Gong Jian-hua On Virtual Geographic Environments , 2002 .

[41]  Andrea Giacomelli,et al.  A European perspective on Digital Earth , 2011, Int. J. Digit. Earth.

[42]  Andrew Pohorille,et al.  The NASA Astrobiology Roadmap. , 2008, Astrobiology.

[43]  Marco A. Casanova,et al.  TerraLib: An Open Source GIS Library for Large-Scale Environmental and Socio-Economic Applications , 2008 .

[44]  Lin Hui,et al.  A grid-based collaborative virtual geographic environment for the planning of silt dam systems , 2010 .

[45]  Zesheng Tang,et al.  Lunar digital elevation model and elevation distribution model based on Chang’E-1 LAM data , 2010 .