T2‐weighted cardiovascular magnetic resonance imaging

Technical advances in T2‐weighted cardiovascular MR (CMR) imaging allow for accurate identification and quantification of tissue injuries that alter myocardial T2 relaxation. Of these, myocardial edema is of special relevance. Increased myocardial water content is an important feature of ischemic as well as nonischemic cardiomyopathies, which are often associated with acute myocardial inflammation. In this article, we review technical considerations and discuss clinical indications of myocardial T2‐weighted imaging. J. Magn. Reson. Imaging 2007;26:452–459. © 2007 Wiley‐Liss, Inc.

[1]  L Axel,et al.  Blood flow effects in magnetic resonance imaging. , 1984, Magnetic resonance annual.

[2]  G. Hutchins,et al.  Clinicopathoiogic description of myocarditis , 1991 .

[3]  G M Bydder,et al.  MR Imaging: Clinical Use of the Inversion Recovery Sequence , 1985, Journal of computer assisted tomography.

[4]  M. Gagliardi,et al.  Usefulness of magnetic resonance imaging for diagnosis of acute myocarditis in infants and children, and comparison with endomyocardial biopsy. , 1991, The American journal of cardiology.

[5]  S. Allen,et al.  Lymph Flow, Interstitial Fibrosis, and Cardiac Function , 2005 .

[6]  K. Beisel,et al.  Coxsackievirus B3 murine myocarditis: a pathologic spectrum of myocarditis in genetically defined inbred strains. , 1987, Journal of the American College of Cardiology.

[7]  D. L. Johnston,et al.  Serial changes in nuclear magnetic resonance relaxation times after myocardial infarction in the rabbit: Relationship to water content, severity of ischemia, and histopathology over a six‐month period , 1988, Magnetic resonance in medicine.

[8]  O. Simonetti,et al.  "Black blood" T2-weighted inversion-recovery MR imaging of the heart. , 1996, Radiology.

[9]  K. Kreitner,et al.  MRT des Herzens bei Verdacht auf Myokarditis , 2002 .

[10]  N M Hylton,et al.  NMR in experimental cerebral edema: value of T1 and T2 calculations. , 1984, AJNR. American journal of neuroradiology.

[11]  H. Grigoriew,et al.  STUDY OF THE MECHANICAL NANOCRYSTALLIZATION PROCESS OF AMORPHOUS FE78B13SI9 ALLOY USING THE PAIR FUNCTION METHOD , 1995 .

[12]  D Chien,et al.  Fast selective black blood MR imaging. , 1991, Radiology.

[13]  L. Pitts,et al.  Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema in a rat model. , 1986, Journal of neurosurgery.

[14]  K. Kreitner,et al.  [Cardiac MRI in suspected myocarditis]. , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[15]  P. Joseph,et al.  Water content and NMR relaxation time gradients in the rabbit kidney. , 1986, Investigative radiology.

[16]  R. F. Hoyt,et al.  Cardiac magnetic resonance imaging , 2004, Postgraduate Medical Journal.

[17]  S J Allen,et al.  Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. , 1991, Circulation research.

[18]  D M Kramer,et al.  Preliminary experimental results in humans and animals with a superconducting, whole-body, nuclear magnetic resonance scanner. , 1982, Radiology.

[19]  S. Bishop,et al.  Assessment of Postreperfusion Myocardial Hemorrhage Using Proton NMR Imaging at 1.5 T , 1992, Circulation.

[20]  C. Higgins,et al.  Magnetic resonance imaging of cardiac transplants: the evaluation of rejection of cardiac allografts with and without immunosuppression. , 1986, Circulation.

[21]  D. Skorton,et al.  NMR relaxation times in acute myocardial infarction: Relative influence of changes in tissue water and fat content , 1992, Magnetic resonance in medicine.

[22]  A. Buda,et al.  Transmural distribution of myocardial edema by NMR relaxometry following myocardial ischemia and reperfusion. , 1991, American heart journal.

[23]  T. Lim,et al.  Application of breath‐hold T2‐weighted, first‐pass perfusion and gadolinium‐enhanced T1‐weighted MR imaging for assessment of myocardial viability in a pig model , 2000, Journal of magnetic resonance imaging : JMRI.

[24]  R. Kim,et al.  Visualization of Discrete Microinfarction After Percutaneous Coronary Intervention Associated With Mild Creatine Kinase-MB Elevation , 2001, Circulation.

[25]  G. Adam,et al.  Vergleich der ödemsensitiven HASTE-TIRM-Sequenz mit der späten Kontrastmittelanreicherung bei akutem Myokardinfarkt , 2003 .

[26]  S. Dymarkowski,et al.  Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial , 2006, The Lancet.

[27]  O. Vignaux,et al.  Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis: a 1-year follow-up study. , 2002, Chest.

[28]  J. Gili,et al.  Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. , 1993, Cardiovascular research.

[29]  Arrhythmogenic right ventricular cardiomyopathy with fibrofatty atrophy, myocardial oedema, and aneurysmal dilation , 2005, Heart.

[30]  J. Willerson,et al.  Abnormalities of volume regulation and membrane integrity in myocardial tissue slices after early ischemic injury in the dog: effects of mannitol, polyethylene glycol, and propranolol. , 1981, The American journal of pathology.

[31]  N Danchin,et al.  Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. , 2001, Journal of the American College of Cardiology.

[32]  Stefan Neubauer,et al.  Value of Delayed-Enhancement Cardiovascular Magnetic Resonance Imaging in Predicting Myocardial Viability After Surgical Revascularization , 2004, Circulation.

[33]  S. Allen,et al.  Myocardial edema, left ventricular function, and pulmonary hypertension. , 1995, Journal of applied physiology.

[34]  J. Schulz-Menger,et al.  Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. , 2005, Journal of the American College of Cardiology.

[35]  R. Jennings,et al.  The Changing Anatomic Reference Base of Evolving Myocardial Infarction: Underestimation of Myocardial Collateral Blood Flow and Overestimation of Experimental Anatomic Infarct Size Due to Tissue Edema, Hemorrhage and Acute Inflammation , 1979, Circulation.

[36]  J. Schulz-Menger,et al.  Delayed Enhancement and T2-Weighted Cardiovascular Magnetic Resonance Imaging Differentiate Acute From Chronic Myocardial Infarction , 2004, Circulation.

[37]  J. Brown,et al.  Regional myocardial blood flow, edema formation, and magnetic relaxation times during acute myocardial ischemia in the canine. , 1985, Investigative radiology.

[38]  Katherine C. Wu,et al.  Neurohumoral features of myocardial stunning due to sudden emotional stress. , 2005, The New England journal of medicine.

[39]  G. Jensen,et al.  Sustained postinfarction myocardial oedema in humans visualised by magnetic resonance imaging , 2001, Heart.

[40]  Hilde Bosmans,et al.  Value of T2-Weighted Magnetic Resonance Imaging Early After Myocardial Infarction in Dogs: Comparison With Bis-Gadolinium-Mesoporphyrin Enhanced T1-Weighted Magnetic Resonance Imaging and Functional Data From Cine Magnetic Resonance Imaging , 2002, Investigative radiology.

[41]  N Danchin,et al.  Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. , 2001, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[42]  Udo Sechtem,et al.  Cardiovascular Magnetic Resonance Assessment of Human Myocarditis: A Comparison to Histology and Molecular Pathology , 2004, Circulation.

[43]  J. Willerson,et al.  Abnormal myocardial fluid retention as an early manifestation of ischemic injury. , 1976, Recent advances in studies on cardiac structure and metabolism.

[44]  W. Edwards,et al.  Myocarditis. A histopathologic definition and classification. , 1987, The American journal of cardiovascular pathology.

[45]  D. Adams,et al.  The detection of inflammation in collapsed lung by alterations in proton nuclear magnetic relaxation times. , 1985, Investigative radiology.

[46]  T. Foster,et al.  A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. , 1984, Medical physics.

[47]  Maximilian Reiser,et al.  Single-shot t1-and t2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience , 1996, Magnetic Resonance Materials in Physics, Biology and Medicine.

[48]  S. Rahimtoola,et al.  Detection of acute myocarditis using nuclear magnetic resonance imaging. , 1987, The American journal of medicine.

[49]  D. Hough,et al.  Comparison of breath-hold fast spin-echo and conventional spin-echo pulse sequences for T2-weighted MR imaging of liver lesions. , 1995, Radiology.

[50]  P. Myerowitz,et al.  Effects of hypoproteinemia-induced myocardial edema on left ventricular function. , 1998, American journal of physiology. Heart and circulatory physiology.

[51]  R. C. Reeves,et al.  Assessment of myocardial infarct size by means of T2-weighted 1H nuclear magnetic resonance imaging. , 1989, American heart journal.

[52]  O Strohm,et al.  Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. , 1998, Circulation.

[53]  V. Simplaceanu,et al.  Tissue water content and nuclear magnetic resonance in normal and tumor tissues. , 1975, Cancer research.

[54]  L. Boxt,et al.  Estimation of myocardial water content using transverse relaxation time from dual spin-echo magnetic resonance imaging. , 1993, Magnetic resonance imaging.

[55]  G Thiene,et al.  Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. , 2000, Human pathology.

[56]  M. Hiroe,et al.  Histopathologic and ultrastructural observations of acute and convalescent myocarditis: A serial endomyocardial biopsy study , 2005, Heart and Vessels.

[57]  O. Simonetti,et al.  An improved MR imaging technique for the visualization of myocardial infarction. , 2001, Radiology.

[58]  C. Higgins,et al.  Cardiac transplantations in dogs: evaluation with MR. , 1985, Radiology.

[59]  R. Herfkens,et al.  Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. , 1983, The American journal of cardiology.

[60]  N. Himes,et al.  Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. , 2004, The Journal of clinical investigation.

[61]  B. Maron,et al.  Acute and Reversible Cardiomyopathy Provoked by Stress in Women From the United States , 2005, Circulation.

[62]  K. Baughman,et al.  A clinicopathologic description of myocarditis. , 1993, Clinical immunology and immunopathology.

[63]  D. Garcia-Dorado,et al.  Myocardial oedema: a preventable cause of reperfusion injury? , 1993, Cardiovascular research.

[64]  C. Higgins,et al.  Diagnosis of acute and chronic cardiac rejection by magnetic resonance imaging: a non-invasive in-vivo study. , 1988, The Journal of cardiovascular surgery.

[65]  T. Brady,et al.  Early detection of cardiac allograft rejection with proton nuclear magnetic resonance. , 1985, Circulation.

[66]  P. Schoenhagen The emerging role of delayed contrast-enhanced magnetic resonance imaging in the peri-operative evaluation of patients undergoing coronary revascularisation. , 2004, European heart journal.