Enhancement-Mode 300-mm GaN-on-Si(111) With Integrated Si CMOS for Future mm-Wave RF Applications

A 300-mm GaN-on-Si(111) high-<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> gate dielectric E-mode GaN MOSHEMT technology is demonstrated with uniform process and wafer characteristics. The E-mode GaN MOSHEMT of <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {G}}$ </tex-math></inline-formula> = 90 nm, <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {GS}}$ </tex-math></inline-formula> = <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {GD}}$ </tex-math></inline-formula> = 80 nm, is enabled by 300-mm process capabilities in deep U (DUV) lithography, MOCVD, atomic layer etch (ALE), atomic layer deposition (ALD), and Cu interconnect. The GaN MOSHEMT shows excellent ON/OFF characteristics, low leakages, low <inline-formula> <tex-math notation="LaTeX">$R_{\mathrm {on}}$ </tex-math></inline-formula>, high <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {D}}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$f_{T}/f_{\mathrm {MAX}}$ </tex-math></inline-formula> of 140/280 GHz. A 42-GHz mm-Wave power amplifier (PA) fabricated in this process for the first time demonstrates a saturated power of 25.6 dBm, a linear gain of 22.5 dB, and a PAE of 35.7%. In this technology, high <inline-formula> <tex-math notation="LaTeX">$f_{T}/f_{\mathrm {MAX}}$ </tex-math></inline-formula> is obtained by scaling to thin equivalent oxide thickness (EOT) and short <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {G}}$ </tex-math></inline-formula>, and high breakdown is achieved with extended <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {GD}}$ </tex-math></inline-formula> and field plating. Si CMOS can be integrated with this GaN technology using 3-D layer transfer and does not alter the RF performance of the GaN MOSHEMT. Record <inline-formula> <tex-math notation="LaTeX">$f_{\mathrm {MAX}}$ </tex-math></inline-formula> = 700 GHz (<inline-formula> <tex-math notation="LaTeX">$f_{T}$ </tex-math></inline-formula> = 115 GHz) is obtained with an <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {G}}$ </tex-math></inline-formula> = 50 nm GaN MOSHEMT with submicrometer source field plate (FP) fabricated using this 300-mm GaN MOSHEMT process with integrated Si CMOS. Finally, progress on process design kit (PDK) development for this technology is reported.

[1]  M. Radosavljevic,et al.  Scaled Submicron Field-Plated Enhancement Mode High-K Gallium Nitride Transistors on 300mm Si(111) Wafer with Power FoM (RON xQGG) of 3.1 mohm-nC at 40V and fT/fMAX of 130/680GHz , 2022, 2022 International Electron Devices Meeting (IEDM).

[2]  Jessica C. Chou,et al.  5G mmWave Power Amplifier and Low-Noise Amplifier in 300mm GaN-on-Si Technology , 2022, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).

[3]  William J. Lambert,et al.  A 32-A, 5-V-Input, 94.2% Peak Efficiency High-Frequency Power Converter Module Featuring Package-Integrated Low-Voltage GaN nMOS Power Transistors , 2022, IEEE Journal of Solid-State Circuits.

[4]  M. Radosavljevic,et al.  Advanced Scaling of Enhancement Mode High-K Gallium Nitride-on-300mm-Si(111) Transistor and 3D Layer Transfer GaN-Silicon Finfet CMOS Integration , 2021, 2021 IEEE International Electron Devices Meeting (IEDM).

[5]  R. Kotlyar,et al.  Advances in Research on 300mm Gallium Nitride-on-Si(111) NMOS Transistor and Silicon CMOS Integration , 2020, 2020 IEEE International Electron Devices Meeting (IEDM).

[6]  D. Jena,et al.  GaN HEMTs on Si With Regrown Contacts and Cutoff/Maximum Oscillation Frequencies of 250/204 GHz , 2020, IEEE Electron Device Letters.

[7]  J. Laroche Towards a Si foundry-compatible GaN-on-Si MMIC process on 200mm Si with Cu damascene BEOL (Conference Presentation) , 2020 .

[8]  M. Radosavljevic,et al.  3D heterogeneous integration of high performance high-K metal gate GaN NMOS and Si PMOS transistors on 300mm high-resistivity Si substrate for energy-efficient and compact power delivery, RF (5G and beyond) and SoC applications , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[9]  Kei May Lau,et al.  Enhancement-Mode GaN MOS-HEMTs With Recess-Free Barrier Engineering and High- ${k}$ ZrO2 Gate Dielectric , 2018, IEEE Electron Device Letters.

[10]  M. Radosavljevic,et al.  High-K gate dielectric depletion-mode and enhancement-mode GaN MOS-HEMTs for improved OFF-state leakage and DIBL for power electronics and RF applications , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[11]  J. Kavalieros,et al.  Experimental observation and physics of “negative” capacitance and steeper than 40mV/decade subthreshold swing in Al0.83In0.17N/AlN/GaN MOS-HEMT on SiC substrate , 2013, 2013 IEEE International Electron Devices Meeting.

[12]  Kuei-Shu Chang-Liao,et al.  Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method , 2013 .

[13]  T. E. Kazior,et al.  High Performance Mixed Signal and RF Circuits Enabled by the Direct Monolithic Heterogeneous Integration of GaN HEMTs and Si CMOS on a Silicon Substrate , 2010, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[14]  M. Kanamura,et al.  Enhancement-mode GaN MIS-HEMTs for power supplies , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[15]  T. Oka,et al.  AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications , 2008, IEEE Electron Device Letters.

[16]  Shreepad Karmalkar,et al.  Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate , 2001 .

[17]  S. Keller,et al.  High breakdown GaN HEMT with overlapping gate structure , 2000, IEEE Electron Device Letters.

[18]  A. Plößl Wafer direct bonding: tailoring adhesion between brittle materials , 1999 .

[19]  P. Bai,et al.  A high performance 180 nm generation logic technology , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[20]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[21]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.