Robot formation motion planning using Fast Marching

This paper presents the application of the Voronoi Fast Marching (VFM) method to path planning of mobile formation robots. The VFM method uses the propagation of a wave (Fast Marching) operating on the world model to determine a motion plan over a viscosity map (similar to the refraction index in optics) extracted from the updated map model. The computational efficiency of the method allows the planner to operate at high rate sensor frequencies. This method allows us to maintain good response time and smooth and safe planned trajectories. The navigation function can be classified as a type of potential field, but it has no local minima, it is complete (it finds the solution path if it exists) and it has a complexity of order n(O(n)), where n is the number of cells in the environment map. The results presented in this paper show how the proposed method behaves with mobile robot formations and generates trajectories of good quality without problems of local minima when the formation encounters non-convex obstacles.

[1]  Dolores Blanco,et al.  Voronoi diagram and fast marching applied to path planning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Dolores Blanco,et al.  Fm 2: a Real-Time Sensor-Based Feedback Controller for Mobile Robots , 2009, Int. J. Robotics Autom..

[3]  Herbert G. Tanner ISS properties of nonholonomic vehicles , 2004, Syst. Control. Lett..

[4]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[5]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[6]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[7]  Vijay Kumar,et al.  Cooperative Control of Robot Formations , 2002 .

[8]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[9]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  Carl D. Crane,et al.  Compliant Formation Control of a Multi-Vehicle System , 2007, 2007 International Symposium on Computational Intelligence in Robotics and Automation.

[11]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..

[12]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Dolores Blanco,et al.  Exploration of a cluttered environment using Voronoi Transform and Fast Marching , 2008, Robotics Auton. Syst..

[14]  Konstantinos Kalovrektis,et al.  Application of Robot Formation Scheme for Screening Solar Energy in a Greenhouse , 2009 .

[15]  Fernando Martin,et al.  Smooth path planning for non-holonomic robots using fast marching , 2009, 2009 IEEE International Conference on Mechatronics.

[16]  Dolores Blanco,et al.  Sensor-based global planning for mobile robot navigation , 2007, Robotica.

[17]  Pedro U. Lima,et al.  NON-HOLONOMIC ROBOT FORMATIONS WITH OBSTACLE COMPLIANT GEOMETRY , 2007 .

[18]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[19]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[20]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[21]  Panos M. Pardalos,et al.  Cooperative control and optimization , 2002 .