Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

A link between crystalline symmetry and the allowed symmetries of spin–orbit torques provides a route for manipulating magnetic devices with perpendicular anisotropy.

[1]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[2]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[3]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[4]  T. Jungwirth,et al.  Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer , 2015, Nature Communications.

[5]  Timur K. Kim,et al.  Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2. , 2015, Physical review letters.

[6]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[7]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[8]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[9]  J. Wunderlich,et al.  Spin-orbit-driven ferromagnetic resonance. , 2010, Nature nanotechnology.

[10]  M. D. Stiles,et al.  Spin transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance , 2014, 1411.4863.

[11]  J. Pearson,et al.  Research Update: Spin transfer torques in permalloy on monolayer MoS2 , 2016 .

[12]  G. Gaudin,et al.  Spin-orbit torque driven chiral magnetization reversal in ultrathin nanostructures , 2015, 1509.07341.

[13]  Kang L. Wang,et al.  Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation , 2014 .

[14]  H. Ohno,et al.  Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. , 2012, Nature materials.

[15]  J. Sinova,et al.  An antidamping spin-orbit torque originating from the Berry curvature. , 2014, Nature nanotechnology.

[16]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[17]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[18]  H. Ohno,et al.  Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO , 2015 .

[19]  S. Seo,et al.  Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer , 2010 .

[20]  Juan Liu,et al.  Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2. , 2015, Physical review letters.

[21]  L. Balicas,et al.  Role of spin-orbit coupling and evolution of the electronic structure of WTe 2 under an external magnetic field , 2015, 1505.01242.

[22]  S. Maekawa,et al.  Electric manipulation of spin relaxation using the spin Hall effect. , 2008, Physical review letters.

[23]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[24]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[25]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[26]  F. Freimuth,et al.  Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. , 2013, Nature nanotechnology.

[27]  S. Auffret,et al.  Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.

[28]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[29]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[30]  B. E. Brown The crystal structures of WTe2 and high‐temperature MoTe2 , 1966 .

[31]  A. Morpurgo,et al.  Tuning magnetotransport in a compensated semimetal at the atomic scale , 2015, Nature Communications.

[32]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[33]  Y. Shi,et al.  Raman scattering investigation of large positive magnetoresistance material WTe2 , 2015, 1501.06321.

[34]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[35]  D. Ralph,et al.  Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect , 2013, 1312.7301.

[36]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[37]  Jacek K. Furdyna,et al.  Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.

[38]  J. S. Lee,et al.  Spin-transfer torque generated by a topological insulator , 2014, Nature.

[39]  H. Jaffrès,et al.  Perpendicular magnetization reversal in Pt/[Co/Ni]3/Al multilayers via the spin Hall effect of Pt , 2015, 1511.07478.

[40]  J. H. Franken,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[41]  H. Ohno,et al.  Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As , 2010 .