Interactive Data Visualization with Multidimensional Scaling

As a data-mapping technique, MDS is fundamentally a visualization method. It is hence plausible that MDS gains in power if it is embedded in a data visualization environment. Consequently, the MDS systems presented here are conceived as extensions of multivariate data visualization systems (“GGvis” and “X/GGobi” in this case). The visual analysis of MDS output profits from dynamic projection tools for viewing high-dimensional configurations, from brushing multiple linked views, from plot enhancements such as labels, glyphs, colors, lines, and from selective removal of groups of objects. Powerful is also the ability to move points and groups of points interactively and thereby create new starting configurations for MDS optimization.

[1]  E. Rothkopf A measure of stimulus similarity and errors in some paired-associate learning tasks. , 1957, Journal of experimental psychology.

[2]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[3]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[4]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[5]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[6]  Forrest W. Young,et al.  Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features , 1977 .

[7]  Gordon M. Crippen,et al.  Stable calculation of coordinates from distance information , 1978 .

[8]  J. Graef,et al.  Using Distance Information in the Design of Large Multidimensional Scaling Experiments , 1979 .

[9]  Timothy F. Havel An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. , 1991, Progress in biophysics and molecular biology.

[10]  Michael L. Littman,et al.  Visualizing the embedding of objects in Euclidean space , 1992 .

[11]  Forrest W. Young,et al.  Graphical Sensitivity Analysis for Multidimensional Scaling , 1994 .

[12]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[13]  Andreas Buja,et al.  Interactive High-Dimensional Data Visualization , 1996 .

[14]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[15]  Michael W. Trosset,et al.  Applications of Multidimensional Scaling to Molecular Conformation , 1997 .

[16]  M. Trosset A New Formulation of the Nonmetric Strain Problem in Multidimensional Scaling , 1998 .

[17]  Andreas Buja,et al.  Visualization Methodology for Multidimensional Scaling , 2002, J. Classif..

[18]  Duncan Temple Lang,et al.  GGobi: evolving from XGobi into an extensible framework for interactive data visualization , 2003, Comput. Stat. Data Anal..

[19]  Andreas Buja,et al.  Exploratory Visual Analysis of Graphs in GGOBI , 2004 .

[20]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.