Parametrization of Minimal Spectral Factors of Discrete-Time Rational Spectral Densities

In this paper, the problem of providing a complete parametrization of the minimal spectral factors of a discrete-time rational spectral density is considered. The desired parametrization, given in terms of the all-pass divisors of a certain all-pass function, is established in the most general setting: after several partial results, mostly in the continuous-time case, this is indeed the first complete parametrization obtained without resorting to any facilitating assumption. This result provides a positive answer to a conjecture raised in 2016.

[1]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[2]  André C. M. Ran,et al.  Minimal Square Spectral Factors via Triples , 2000, SIAM J. Matrix Anal. Appl..

[3]  A. Ferrante A parameterization of minimal stochastic realizations , 1994, IEEE Trans. Autom. Control..

[4]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[5]  L. Finesso,et al.  A characterization of minimal square spectral factors , 1982 .

[6]  Cristian Oara,et al.  Computation of the General $(J,J^{\prime})$-Lossless Factorization , 2011, IEEE Transactions on Automatic Control.

[7]  C. Oar Constructive solutions to spectral and inner-outer factorizations with respect to the disk , 2005 .

[8]  G. Picci,et al.  Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification , 2016 .

[9]  Israel Gohberg,et al.  Factorization of Matrix and Operator Functions: The State Space Method , 2007 .

[10]  André C. M. Ran,et al.  Minimal square spectral factors , 1995 .

[11]  Giorgio Picci,et al.  Acausal models and balanced realizations of stationary processes , 1994 .

[12]  Giacomo Baggio,et al.  On Minimal Spectral Factors With Zeroes and Poles Lying on Prescribed Regions , 2016, IEEE Transactions on Automatic Control.

[13]  Giorgio Picci,et al.  Representation and Factorization of Discrete-Time Rational All-Pass Functions , 2015, IEEE Transactions on Automatic Control.

[14]  M. A. Kaashoek,et al.  Minimal Factorization of Matrix and Operator Functions , 1980 .

[15]  M. Pavon,et al.  Parametrization of all minimal square spectral factors , 1993 .

[16]  Giorgio Picci,et al.  A geometric approach to modeling and estimation of linear stochastic systems , 2001 .

[17]  G. Picci,et al.  Realization Theory for Multivariate Stationary Gaussian Processes , 1985 .

[18]  A. Ferrante A parametrization of the minimal square spectral factors of a nonrational spectral density. , 1997 .

[19]  D. Youla,et al.  On the factorization of rational matrices , 1961, IRE Trans. Inf. Theory.

[20]  Augusto Ferrante Minimal representations of continuous-time processes having spectral density with zeros in the extended imaginary axis , 2005, Syst. Control. Lett..

[21]  Cristian Oara,et al.  JJ factorizations of a general discrete-time system , 2013, Autom..

[22]  Patrizio Colaneri,et al.  Algebraic Riccati equation and J-spectral factorization for H∞ smoothing and deconvolution , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[23]  A. Ran,et al.  Nonsquare spectral factors via factorizations of a unitary function , 2002 .

[24]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[25]  Lorenzo Ntogramatzidis,et al.  The generalised discrete algebraic Riccati equation in linear-quadratic optimal control , 2013, Autom..

[26]  J. Willems,et al.  Factorization indices at infinity for rational matrix functions , 1979 .

[27]  André C. M. Ran,et al.  Minimal nonsquare spectral factors , 2002 .

[28]  Cristian Oară,et al.  J factorizations of a general discrete-time system , 2013 .

[29]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[30]  Paul A. Fuhrmann,et al.  On a Hardy space approach to the analysis of spectral factors , 1998 .

[31]  G. Picci,et al.  On the Stochastic Realization Problem , 1979 .

[32]  Giacomo Baggio,et al.  On the Factorization of Rational Discrete-Time Spectral Densities , 2014, IEEE Transactions on Automatic Control.

[33]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[34]  David J. Clements,et al.  Rational spectral factorization using state-space methods , 1993 .

[35]  Cristian Oara Constructive solutions to spectral and inner-outer factorizations with respect to the disk , 2005, Autom..