Scheme for implementing linear optical quantum iSWAP gate with conventional photon detectors

A simple scheme is proposed to implement a two-qubit linear optical quantum iSWAP gate that is a universal gate in quantum computation and quantum information processing. By the interference effect of the polarized photons, a quantum iSWAP gate can be achieved with a low success probability (η4/32, with η being the quantum efficiency of photon detectors). The scheme is based only on simple linear optical elements, a pair of two-photon polarization entangled states, and conventional photon detectors that only distinguish the vacuum and nonvacuum Fock number states, which greatly decreases the experimental difficulty of implementing linear optical quantum computation.

[1]  Xuedong Hu,et al.  Efficient purification protocols using iSWAP gates in solid-state qubits , 2008, 0807.4788.

[2]  Xuedong Hu,et al.  Efficient quantum circuits for one-way quantum computing. , 2008, Physical review letters.

[3]  Guo‐Feng Zhang Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction , 2007, quant-ph/0703019.

[4]  Guang-Can Guo,et al.  Linear optical scheme for direct implementation of a nondestructive N -qubit controlled phase gate , 2006 .

[5]  Mang Feng,et al.  Toffoli gate originating from a single resonant interaction with cavity QED , 2006 .

[6]  B. Gerardot,et al.  Entangled photon pairs from semiconductor quantum dots. , 2005, Physical review letters.

[7]  J. Siewert,et al.  Natural two-qubit gate for quantum computation using the XY interaction , 2002, quant-ph/0209035.

[8]  S. Glancy,et al.  Imperfect detectors in linear optical quantum computers , 2002, quant-ph/0201047.

[9]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[10]  H. Walther,et al.  Generation of photon number states on demand via cavity quantum electrodynamics. , 2001, Physical review letters.

[11]  Andrew M. Childs,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[12]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[13]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[14]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[15]  Gilles Nogues,et al.  Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED , 1999 .

[16]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[17]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[18]  D. DiVincenzo,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999, quant-ph/9904096.

[19]  Y. Yamamoto,et al.  A single-photon turnstile device , 1999, Nature.

[20]  Stephen M. Barnett,et al.  Imperfect photodetection as projection onto mixed states , 1998 .

[21]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[23]  G. Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[24]  De Martini F,et al.  Single-mode generation of quantum photon states by excited single molecules in a microcavity trap. , 1996, Physical review letters.

[25]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[26]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[27]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[28]  Ou,et al.  Observation of spatial quantum beating with separated photodetectors. , 1988, Physical review letters.

[29]  L. Mandel,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .